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1.1.  Introduction of CAD 
 

In the mid of 1970s, as computer aided design starts to offer more potential than just a skill to 

replicate manual drafting with electronic drafting, the cost gain for companies to switch to CAD became 

obvious. The  benefit of CAD methods over manual drafting are the capabilities one often takes for 

established from computer systems; automated creation of Bill of Material, interference checking, auto 

layout in integrated circuits. 

 
 

1.2.  Product cycle 
 

Product cycle integrate processes, people, data, and business and gives a product information 

for industries and their extended activity. Product cycle is the process of managing the entire lifecycle of 

a  product  from starting,  through  design  and  manufacture,  to  repair  and  removal  of  manufactured 

products. 

Product cycle methods assist association in managing with the rising difficulty and engineering 

challenges of developing new products for the worldwide competitive markets. 

Product lifecycle management (PLM) can be part of one of the following four fundamentals of a 

manufacturing information technology structure. 

(i) Customer Relationship Management  (CRM) 

(ii) Supply Chain Management  (SCM) 

(iii) Enterprise resource planning (ERP) 
 

(iv) Product Planning and Development (PPD). 
 

The core of PLM is in the formation and management of all product information and the 

technology used to access this data and knowledge. PLM as a discipline appeared from tools such 

as CAD, CAM and PDM, but can be viewed as the combination of these tools with processes, methods 



 

 

 

 

 
 

and people through all stages of a product’s life cycle. PLM is not just about software technology but is 

also a business approach. 
 

 
1.2.1. Product Cycle Model 

 

There are several Product cycle models in industry to be considered, one of the possible product 

cycle is given below (Fig.1.1.): 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1.1. Product Cycle Model 

 

 
Step 1: Conceive 

 

Imagine, Specify, Plan, Innovate 
 

The first step is the definition of the product requirements based on company, market and 

customer.  From this requirement, the product's technical data can be defined. In parallel, the early 

concept design work is performed defining the product with its main functional features. Various media 

are utilized for these processes, from paper and pencil to clay mock-up to 3D Computer Aided Industrial 

Design. 
 

 
Step 2: Design 

 

Describe, Define, Develop, Test, Analyze and Validate 
 

This is where the completed design and development of the product begins, succeeding to 

prototype  testing, through pilot release to final product. It can also involve redesign and ramp for 



 

 

 

 

improvement to existing products as well as planned obsolescence. The main tool used for design and 

development  is  CAD.  This  can  be  simple  2D  drawing  /  drafting  or  3D parametric  feature  based 

solid/surface modeling. 

This step covers many engineering disciplines including: electronic, electrical, mechanical, and 

civil.  Besides the actual making of geometry there is the analysis of the components and assemblies. 

 

Optimization,  Validation  and  Simulation  activities  are  carried  out  using  Computer  Aided 

Engineering (CAE) software. These are used to perform various tasks such as: Computational Fluid 

Dynamics (CFD); Finite Element Analysis (FEA); and Mechanical Event Simulation (MES). Computer 

Aided Quality  (CAQ) is used for activities such as Dimensional tolerance analysis. One more task 

carried out at this step is the sourcing of bought out components with the aid of procurement process. 

 
 

Step 3: Realize 
 

Manufacture, Make, Build, Procure, Produce, Sell and Deliver 
 

Once the design of the components is complete the method of manufacturing is finalized. This 

includes  CAD  operations  such  as  generation  of  CNC  Machining  instructions  for  the  product’s 

component  as  well  as  tools  to  manufacture  those  components,  using  integrated  Computer  Aided 

Manufacturing (CAM) software. 

It includes Production Planning tools for carrying out plant and factory layout and production 

simulation. Once details components are manufactured their geometrical form and dimensions can be 

verified  against the  original  data  with the  use  of Computer  Aided  Inspection  Equipment  (CAIE). 

Parallel to the engineering tasks, sales and marketing work take place. This could consist of transferring 

engineering data to a web based sales configuration. 
 

 
Step 4: Service 

 

Use, Operate, Maintain, Support, Sustain, Phase-out, Retire, Recycle and Disposal 

The final step  of  the  lifecycle  includes  managing  of  information  related to service for repair  and 

maintenance, as well as recycling and waste management information. This involves using tools like 

Maintenance, Repair and Operations Management software. 
 

 
1.3. Design Process 

 

The design process includes series of steps that engineers apply in making functional products 

and processes. The parts of the process often need to be repeated many times before production of a 

product can start. The parts that get iterated and the number of such design cycles in any given project 

can be highly changeable. 

One method of the engineering design process focuses on the following common aspects: 

http://en.wikipedia.org/wiki/Tolerance_(engineering)


 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Research 

Fig.1.2. Design Process 

 

A considerable  amount  of  time  is  used  on research,  or  finding  information. Consideration 

should  be  given  to  the  available  applicable  literature,  issues  and  successes  linked  with  avaialbe 

solutions, and need of marketplaces. 
 

 
The   basis   of   information   should   be   significant,   including   existing   results. Reverse 

engineering can be a successful technique if other solutions are available in the market. Added sources 

of  information  include  the  trade  journals,  available  government  documents,  local libraries,  vendor 

catalogs and personal organizations. 
 

 
2.   Feasibility assessment 

 

The feasibility study is an analysis and assessment of the possible of a proposed design which is 

based on detail investigation and research to maintain the process of decision creation. The feasibility 

assessment helps to focus the scope of the project to spot the best situation. The purpose of a feasibility 

assessment is to verify whether the project can continue into the design phase. 

 
 

3.   Conceptualization 



 

 

 

 

 

 

A Concept Study is the stage of project planning that includes developing ideas and taking into 

account the all features of executing those ideas. This stage of a project is done to reduce the likelihood 

of assess risks, error and evaluate the potential success of the planned project. 

 
 

4.   Establishing the design requirements 

Establishing  design  requirements  is  one  of  the  most  essential  elements  in  the  design 

practice, and this task is usually performed at the same time as the feasibility analysis. The design 

requirements control  the design of the project all over the engineering design process. A few design 

requirements comprise maintainability, hardware and software parameters, availability, and testability. 
 

 

5.   Preliminary design 
 

The preliminary design fills the gap between the design concept and the detailed design phase. 

During  this  task,  the  system configuration  is  defined,  and schematics, diagrams,  and layouts of  the 

project will offer early project configuration. In detailed design and optimization, the parameters of the 

part being produced will change, but the preliminary design focuses on creating the common framework 

to construct the project. 
 

 
6.   Detailed design 

 

The  next  phase  of  preliminary  design  is  the  Detailed  Design  which  may  includes  of 

procurement also. This phase builds on the already developed preliminary design, aiming to further 

develop   each  phase  of  the  project  by  total  description  through drawings,  modeling as  well  as 

specifications. 

The advancement CAD programs have made the detailed design phase more competent. This is 

because a CAD program can offer optimization, where it can shrink volume without compromising the 

part's quality. It can also calculate displacement and stress using the FEM to find stresses throughout the 

part. It is the responsibility of   designer to find whether these stresses and displacements are acceptable, 

so the part is safe. 

 
 

7.   Production planning and tool design 
 

The production planning and tool design is more than planning how to mass-produce the project 

and which tools should be used in the manufacturing of the component. Tasks to complete in this stage 

include  material selection, identification of the production processes, finalization of the sequence of 



 

 

 

 

 
 

 

 

operations, and selection of jigs, fixtures, and tooling. This stage also includes testing a working 

prototype to confirm the created part meets qualification standards. 

With  the  finishing  of  qualification  testing  and prototype testing,  the  design  process  is 

completed. 

 
 

1.4. Sequential and Concurrent Engineering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.3. Sequential Vs Concurrent Engineering 
 
 
 
 
 

 
Table 1.1. Sequential Vs Concurrent Engineering 

 

Sequential Engineering Concurrent Engineering 

 
Sequential engineering is the term used to 

explain  the  method  of  production  in  a 

linear system. The various steps are done 

one  after another, with all attention and 

resources focused on that single task. 

In concurrent engineering, various tasks are 

handled at the same time, and not essentially 

in  the standard order. This means that info 

found out later in the course can be added to 

earlier parts, improving them, and also saving 

time. 



 

 

 
 
 
 
 

Sequential   engineering   is  a   system   by 

which   a   group   within   an   organization 

works sequentially to create new products 

and services. 

Concurrent engineering is a method by which 

several  groups  within  an  organization work 

simultaneously to create new products and 

services. 

 

 

The  sequential   engineering   is   a   linear 

product  design  process  during  which  all 

stages of manufacturing operate in serial. 

The concurrent engineering is a non-linear 

product design process during which all stages 

of manufacturing operate at the same time. 

 

 

Both  process  and  product  design  run  in 
 

serial and take place in the different time. 

Both   product   and   process   design  run   in 
 

parallel and take place in the same time. 

 

 

Process and Product are not matched to 

attain optimal matching. 

Process   and   Product   are   coordinated   to 

attain optimal matching of requirements for 

effective quality and delivery. 

 

 

Decision  making  done  by  only  group  of 
 

experts. 

Decision making involves full team 
 

involvement. 

 

 
 

1.5. Computer Aided Design 
 

CAD is the intersection of Computer Graphics, Geometric modeling and Design tools (Fig.1.4.). 

The concepts of computer graphics and geometric modeling and must be used innovatively to serve the 

design process. 

CAD is the function of computer systems to support in the creation, modification, analysis, or 

optimization of a design. CAD software is used to raise the productivity of the designer, progress the 

 

 



 

 

 

 

 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1.4. CAD 
 

CAD software for design uses either vector-based graphics to explain the objects of traditional 

drafting, or may also develop raster graphics showing the overall look of designed objects. During the 

manual drafting of engineering drawings, the output of CAD must convey information, like dimensions, 

materials, processes, and tolerances. 

CAD is a significant industrial art used in many purposes, including industrial and architectural 

design, shipbuilding, automotive, and aerospace industries, and many more. CAD is also extensively 

used  to  create computer  animation for special  effects in  movies, and  technical  manuals,  frequently 

called as Digital Content Creation. 

CAD software packages provide the designer with a multi window environment with animation 

which is regularly used in Digital Content Creation. The animations using wire frame modeling helps 

the designer to see into the interior of object and to observe the behaviors of the inner components of the 

assembly during the motion. 
 

 

1.5.1. CAD Technology 
 

Initially   software   for   CAD   systems   was   developed   with   computer   languages   such 

as FORTRAN but with the development of object-oriented programming methods this has completely 

changed.   Classic   modern parametric   attribute   based   modeler and freeform   surface systems   are 

developing around a number of key ‘C’ modules. 

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Freeform_surface
http://en.wikipedia.org/wiki/C_(programming_language)


 

 

 

 

A CAD system can be seen as develop from the interaction of a Graphical User Interface (GUI) 

with NURBS geometry and Boundary representation data through a kernel for geometric modeling. A 

geometry  constraint engine may also be employed to organize the associative relationships between 

components in an assembly. 

Unexpected facilities of these relationships have led to a new form of prototyping called digital 

prototyping. In difference to physical prototypes, which involve manufacturing time in the design. CAD 

models  can  be created by a computer after the physical prototype has been scanned using an CT 

scanning device.  Based on the nature of the business, digital or physical prototypes can be primarily 

selected according to specific requirements. 

Currently, no special hardware is required for CAD software. However, some special CAD 

systems  can do graphically and computationally intensive tasks, so a higher end graphics card, high 

speed CPUs may be suggested. CAD systems exist for all the major platforms and some packages even 

perform multiple platforms. 

The  human-machine   interface  is   generally  through   a mouse but   can   also  be   using  a 

digitizing graphics tablet. Handling of the view of the part on the screen is also sometimes done with the 

help  of  a Space  mouse  or  Space  Ball.  Special  CAD  systems  also  support  stereoscopic  glasses 

for viewing the 3D objects. 
 

 
1.5.2. CAD Tools 

 

The CAD tools are mainly using for graphics applications and modeling. Aids such a color, 

grids, geometric modifiers and group facilitate structural geometric models. Visualization is achieved 

through shaded components and animation which focus design conceptualization, communication and 

interference detection. FEM packages provide optimization in shape and structure. Adding tolerances, 

tolerance analysis and investigating the effect of manufacturing on the design can perform by utilizing 

CAD tools (Table 1.2). 
 
 
 

Table 1.2. CAD Tools Vs Design Process 
 

CAD Tools Design Process 
 

Geometric modeling, Graphics aids, visualization and 

manipulation 

 

Conceptualization 

http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/NURBS
http://en.wikipedia.org/wiki/Geometric_modeling_kernel
http://en.wikipedia.org/wiki/Prototyping
http://en.wikipedia.org/wiki/Digital_prototyping
http://en.wikipedia.org/wiki/Digital_prototyping
http://en.wikipedia.org/wiki/Digital_prototyping
http://en.wikipedia.org/wiki/Industrial_CT_scanning
http://en.wikipedia.org/wiki/Industrial_CT_scanning
http://en.wikipedia.org/wiki/Industrial_CT_scanning
http://en.wikipedia.org/wiki/Graphics_card
http://en.wikipedia.org/wiki/Computer_mouse
http://en.wikipedia.org/wiki/Scientific_visualization


 

 

 

 

 

 

Geometric modeling, Graphics aids, visualization and 
 

manipulation, animation, assemblies 

Modeling and 
 

Simulation 

 

Analysis packages, customized programs Design Analysis 

Structural optimization Design Optimization 

Dimensioning, tolerance, bill of materials Design evaluation 

Drafting and detailing, Shaded images Communication and 

Documentation 
 

 
1.5.3. Uses of CAD 

 

CAD  is  one  of  the  tools  used  by  designers  and  engineers  and  is  used  in  different  ways 

depending on the profession of the customer and the type of software. 

CAD  is  one  of  the  Digital  Product  Development  activities  within  the Product  Lifecycle 
 

Management practices with other tools, which are either integrated modules or individual, such as: 
 

  Computer Aided engineering (CAE) and Finite Element Analysis (FEA) 
 

  Computer Aided Manufacturing (CAM) 
 

  Realistic Rendering and Simulation. 
 

  Product Data Management (PDM). 
 

CAD is also used for the development of photo simulations that are frequently necessary in the 

preparation of Environmental Impact Reports, in which proposed CAD buildings are superimposed into 

photographs of existing situation to represent what that conditions will be like, where the proposed 

services are allowed to be built. 

Parameters and constraints can be used to get the size, shape, and other properties of the 

modeling elements. The features of the CAD system can be used for the several tools for measurement 

such as yield strength, tensile strength and electrical or electro-magnetic properties. 
 

 
 

1.6. CAD System Architecture 
 

Computer architecture is a pattern describing how a group of software and hardware technology 

standards relate to form a computer system. In general, computer architecture refers to how a computer 

is designed and what technologies it is compatible with. Computer architecture is likened to the art of 

shaping the needs of the technology, and developing a logical design and standards based on needs. 

In CAD, Computer  architecture is  a  set  of  disciplines  that  explains  the  functionality,  the 

organization and the introduction of computer systems; that is, it describes the capabilities of a computer 

and its  programming method in a summary way, and how the internal organization of the system is 

http://en.wikipedia.org/wiki/Product_Lifecycle_Management
http://en.wikipedia.org/wiki/Product_Lifecycle_Management
http://en.wikipedia.org/wiki/Computer-aided_engineering
http://en.wikipedia.org/wiki/Finite_element_analysis
http://en.wikipedia.org/wiki/Computer-aided_manufacturing


 

 

 

 

designed and executed to meet the specified facilities. Computer architecture engages different aspects, 

including  instruction  set  architecture design, logic  design,  and  implementation. The  implementation 

includes Integrated Circuit Design, Power, and Cooling. Optimization of the design needs expertise with 

Compilers, Operating Systems and Packaging. 

 
 

1. Instruction set architecture 
 

An instruction set architecture is the interface between the software and hardware and also can be 

observed as the programmer's view of the machine. Computers do not understand high level languages, 

if any, language elements that translate directly into a machine's native op codes. A processor 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



 

 

 

 

 
UNIT II  GEOMETRIC MODELING        9 

Representation of curves- Hermite curve- Bezier curve- B-spline curves-rational curves-
Techniques for surface modeling – surface patch- Coons and bicubic patches- Bezier and B-
spline surfaces. Solid modeling techniques- CSG and B-rep 

 
 
 

Geometric Modeling 
 

2.1.  Introduction 
 

Geometric modeling is a part of computational geometry and applied mathematics that studies 

algorithms   and techniques for the mathematical description of shapes. 
 

The shapes defined in geometric modeling are generally 2D or 3D, even though several of its 

principles and tools can be used to sets of any finite dimension. Geometric modeling is created with 

computer    based   applications. 2D   models are   significant   in   computer   technical   drawing   and 

typography. 3D  models are  fundamental  to CAD  and  CAM  and  extensively  used  in  many  applied 

technical branches such as civil engineering and mechanical engineering and medical image processing. 
 

Geometric models are commonly differentiated from object oriented models and procedural, 

which  describe the shape perfectly by an opaque algorithm that creates its appearance. They are also 

compared with volumetric models and digital images which shows the shape as a subset of a regular 

partition of space; and with fractal models that provide an infinitely recursive description of the shape. 

Though, these differences are  often fuzzy: for example, a image can be interpreted as a collection 

of colored squares; and geometric shape of circles are defined by implicit mathematical equations. Also, 

a fractal model gives a parametric model when its recursive description is truncated to a finite depth. 
 

 
 
 

2.2.  Representation of curves 
 

A curve is  an  entity  related  to  a line but  which  is  not  required  to  be straight.  A  curve  is 

a topological space which is internally homeomorphism to a line; this shows that a curve is a set of 

points which close to each of its points looks like a line, up to a deformation. 
 

A conic  section is  a curve created  as  the  intersection  of  a cone with  a plane.  In analytic 

geometry,    a   conic   may   be   described   as   a plane   algebraic   curve of   degree   two,   and   as 

a quadric of dimension two. 

 

There are several of added geometric definitions possible. One of the most practical, in that it 

involves only the plane, is that a non circular conic has those points whose distances to various point, 

called a ‘focus’, and several line, called a ‘directrix’, are in a fixed ratio, called the ‘eccentricity’. 



 

 

 

 

 
 

 

2.2.1.Conic Section 
 

Conventionally, the three kinds of conic section are the hyperbola, the ellipse and the parabola. 

The circle is a unique case of the ellipse, and is of adequate interest in its own right that it is sometimes 

described the fourth kind of conic section. The method of a conic relates to its ‘eccentricity’, those with 

eccentricity less than one is ellipses, those with eccentricity equal to one is parabolas, and those with 

eccentricity greater than one is   hyperbolas. In the focus, directrix describes a conic the circle is a 

limiting with eccentricity zero. In modern geometry some degenerate methods, such as the combination 

of two lines, are integrated as conics as well. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig.2.1. Conic sections 
 

The three kinds of conic sections are the ellipse, parabola, and hyperbola. The circle can be 

taken as a fourth kind of ellipse. The circle and the ellipse occur when the intersection of plane and cone 

is a closed curve. The circle is generated when the cutting plane is parallel to the generating of the cone. 

If the cutting plane is parallel to accurately one generating line of the cone, then the conic is unbounded 

and is mentioned a parabola. In the other case, the figure is a hyperbola. 

 

Different factors are connected with a conic section, as shown in the Table 2.1.  For the ellipse, 

the table  shows the case of ‘a’ > ‘b’, for which the  major axis is horizontal; for the  other case, 

interchange the  symbols ‘a’ and ‘b’. For the hyperbola the east-west opening case is specified. In all 

cases, ‘a’ and ‘b’ are positive. 
 

 

 



 

 

 

 

 
 

Table 2.1. Conic Sections 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The non-circular conic sections are accurately those curves that, for a point ‘F’, a line ‘L’ not 

having   ‘F’ and   a   number ‘e’   which   is   non-negative,   are   the locus of   points   whose   distance 

to ‘F’ equals ‘e’ multiplies their distance to ‘L’. ‘F’ is called the focus, ‘L’ the directrix, 

and ‘e’ the eccentricity. 
 

i. Linear eccentricity (c) is the space between the center and the focus. 
 

ii. Latus rectum (2l) is parallel to the directrix and passing via the focus. 
 

iii. Semi-latus rectum (l) is half the latus rectum. 
 

iv. Focal parameter (p) is the distance from the focus to the directrix. 
 

The relationship for the above : p*e = l and a*e=c. 
 
 

2.3.  Hermite curve 
 

A Hermite curve is a spline where every piece is a third degree polynomial defined in Hermite 

form:   that  is, by its values and initial derivatives at the end points of the equivalent domain interval. 

Cubic Hermite splines are normally used for interpolation of numeric values defined at certain dispute 

values x1,x2,x3, ….., xn, to achieve a smooth continuous function. The data should have the preferred 

function  value  and  derivative  at   each Xk.  The  Hermite  formula  is  used  to  every  interval (Xk, 

Xk+1) individually. The resulting spline become continuous and will have first derivative. 

 

Cubic polynomial splines are specially used in computer geometric modeling to 

attain curves that pass via defined points of the plane in 3D space. In these purposes, each coordinate of 

the plane is individually interpolated by a cubic spline function of a divided parameter‘t’. 

 

Cubic splines can be completed to functions of different parameters, in several ways. Bicubic 

splines  are frequently used to interpolate data on a common rectangular grid, such as pixel values in 

a digital picture. Bicubic surface patches, described by three bicubic splines, are an necessary tool in 



 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

computer graphics. Hermite curves are simple to calculate but also more powerful. They are used to 
 

well interpolate between key points. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.2. Hermite curve 
 

The following vectors needs to compute a Hermite curve: 
 
 

  P1: the start point of the Hermite curve 
 

  T1: the tangent to the start point 
 

  P2: the endpoint of the Hermite curve 
 

  T2: the tangent to the endpoint 
 

These four vectors are basically multiplied with four Hermite basis functions h1(s), h2(s), h3(s) 

and,h4(s) and added together. 

h1(s) =  2s
3 

- 3s
2  

+ 1 

h2(s) = -2s
3 

+ 3s
2

 

h3(s) =  s
3  

- 2s
2  

+ s 

h4(s) =  s
3  

- s
2

 

 
Figure 2.3 shows the functions of Hermite Curve of the 4 functions (from left to right: h1, h2, h3, h4). 

 
 
 
 
 
 
 
 
 
 
 

Fig.2.3. Functions of Hermite curve 
 

A closer view at functions ‘h1’ and ‘h2’, the result shows that function ‘h1’ starts at one and 

goes slowly to zero and function ‘h2’ starts at zero and goes slowly to one. 



 

 

 

 

 
 

 

 

At the moment, multiply the start point with function ‘h1’ and the endpoint with function ‘h2’. 

Let s varies from zero to one to interpolate between start and endpoint of Hermite Curve. Function 

‘h3’ and function ‘h4’ are used to the tangents in the similar way. They make confident that the Hermite 

curve bends in the desired direction at the start and endpoint. 

 
 

2.4. Bezier curve 
 

Bezier curves are extensively applied in CAD to model smooth curves. As the curve is totally 

limited in the convex hull of its control points P0, P1,P2 & P3, the points can be graphically represented 

and applied to manipulate the curve logically. The control points P0 and P3 of the polygon lie on the 

curve (Fig.2.4.). The  other two vertices described the order, derivatives and curve shape. The Bezier 

curve is commonly tangent to first and last vertices. 
 

Cubic Bezier curves and Quadratic Bezier curves are very common. Higher degree Bezier 

curves are highly computational to evaluate. When more complex shapes are required, Bezier curves in 

low order are  patched together to produce a composite Bezier curve. A composite Bezier curve is 

usually described to as a ‘path’ in vector graphics standards and programs. For smoothness assurance, 

the control point at which two curves meet should be on the line between the two control points on both 

sides. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.2.4. Bezier curve 
 

A general adaptive  method is recursive subdivision, in which a curve's control points are 

verified to view if the curve approximates a line segment to within a low tolerance. If not, the curve is 

further divided parametrically into two segments, 0 ≤ t ≤ 0.5 and 0.5 ≤ t ≤ 1, and the same process is 

used recursively to each half. There are future promote differencing techniques, but more care must be 

taken to analyze error transmission. 

 

Analytical methods where a Bezier is intersected with every scan line engage finding roots of 

cubic polynomials and having with multiple roots, so they are not often applied in practice. A Bezier 

curve is described by a set of control points P0  through Pn, where ‘n’ is order of curve. The initial and 



 

 

 

 

 
 

 
 

 
 

 
 

 

 

end control points are commonly the end points of the curve; but, the intermediate control points 

normally do not lie on the curve. 

 

(i) Linear Bezier curves 
 

 
 
 
 
 
 
 
 
 

2.5. Linear Bezier curve 
 

As shown in the figure 2.5, the given points P0  and P1, a linear Bezier curve is merely a straight 
 

line between those two points. The Bezier curve is represented by 
 

 
 
 

And it is similar to linear interpolation. 
 

(ii) Quadratic Bezier curves 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2.6. Quadratic Bezier curve 

 

As shown in the figure 2.6, a quadratic Bezier curve is the path defined by the function B(t), 
 

given points P0, P1, and P2, 
 

 

, 

 
This  can  be  interpreted  as  the  linear  interpolate  of  respective  points  on  the  linear  Bezier  curves 

from P0  to P1  and from P1 to P2  respectively. Reshuffle the preceding equation gives: 

 

 
 

The derivative of the Bezier curve with respect to the value ‘t’ is 
 

 

 



 

 

 

 

 
 

 
 

 

 

From  which  it  can  be  finished  that  the  tangents  to  the  curve  at P0  and P2  intersect  at P1.  While 
 

‘t’ increases from zero to one, the curve departs from P0  in the direction of P1, then turns to land 

at P2  from the direction of P1. 

 

The following equation is a second derivative of the Bezier curve with respect to ‘t’: 

 

 
 

A quadratic Bezier curve is represent a parabolic segment. Since a parabola curve is a conic 
 

section, a few sources refer to quadratic Beziers as ‘conic arcs’. 
 

(iii) Cubic Bezier curves 
 

As shown in figure 2.7, four control points P0, P1, P2  and P3  in the higher-dimensional space 

describe  as a Cubic Bezier curve. The curve begins at P0  going on the way to P1  and reaches at P3 

coming from the direction of P2. Typically, it will not pass through control points P1  / P2, these points 

are only there to give directional data. The distance between P0  and P1  determines ‘how fast’ and ‘how 

far’ the curve travels towards P1  before turning towards P2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.7. Cubic Bezier curve 
 

The function B Pi, Pj, Pk (t) for the quadratic Bezier curve written by points Pi, Pj, and Pk, the 
 

cubic Bezier curve can be described as a linear blending of two quadratic Bezier curves: 
 

 
 
 

The open form of the curve is: 

 

 
 

For several choices of P1  and P2  the Bezier curve may meet itself. 

 
Any sequence of any four dissimilar points can be changed to a cubic Bezier curve that goes via 

all four  points in order. Given the beginning and ending point of a few cubic Bezier curve, and the 

http://en.wikipedia.org/wiki/Parabola


 

 

 

 
 

 

 

 

points beside the curve equivalent to t = 1/3 and t = 2/3, the control points for the original Bezier curve 

can be improved. 

 

The following equation represent first derivative of the cubic Bezier curve with respect to t: 

 

 
 

The following equation represent second derivative of the Bezier curve with respect to t: 
 
 
 

 
2.4.1. Properties Bezier curve 

 

  The Bezier curve starts at P0  and ends at Pn; this is known as ‘endpoint interpolation’ property. 
 

  The Bezier curve is a straight line when all the control points of a cure are collinear. 
 

  The beginning of the Bezier curve is tangent to the first portion of the Bezier polygon. 
 

  A Bezier curve can be divided at any point into two sub curves, each of which is also a Bezier 

curve. 

  A few curves that look like simple, such as the circle, cannot be expressed accurately by a Bezier; 

via four piece cubic Bezier curve can similar a circle, with a maximum radial error of less than one 

part in a thousand (Fig.2.8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2.8. Circular Bezier curve 

 
 

  Each  quadratic  Bezier  curve  is  become  a  cubic  Bezier  curve,  and  more  commonly,  each 

degree ‘n’ Bezier curve is also a degree ‘m’ curve for any m > n. 

  Bezier curves have the different diminishing property. A Bezier curves does not ‘ripple’ more than 

the polygon of its control points, and may actually ‘ripple’ less than that. 



 

 

 

 

 
 

 
 

 

 

  Bezier curve is similar with respect to t and (1-t). This represents that the sequence of control points 

defining the curve can be changes without modify of the curve shape. 

  Bezier curve shape can be edited by either modifying one or more vertices of its polygon or by 
 

keeping the polygon unchanged or simplifying multiple coincident points at a vertex (Fig .2.19). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.9. Bezier curve shape 

 

2.4.2. Construction of Bezier curves 
 

(i) Linear curves: 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.2.10. Construction of linear Bezier curve 
 

The figure 2.10 shows the function for a linear Bezier curve can be via of as describing how 

far B(t) is from P0  to P1 with respect to ‘t’.  When t equals to 0.25, B(t) is one quarter of the way from 

point P0  to P1. As ‘t’ varies from 0 to 1, B(t) shows a straight line from P0 to P1. 

 

(ii) Quadratic curves 

 

 



 

 

 

 

 
 

 
 

 

 

Fig.2.11. Construction of linear Quadratic curve 
 

As  shown  in  figure  2.11,  a  quadratic  Bezier  curves  one  can  develop  by  intermediate 

points Q0  and Q1  such that as ‘t’ varies from 0 to 1: 

  Point Q0 (t) modifying from P0  to P1  and expresses a linear Bezier curve. 
 

  Point Q1 (t) modifying from P1  to P2  and expresses a linear Bezier curve. 
 

  Point B (t) is interpolated linearly between Q0(t) to Q1(t) and expresses a quadratic Bezier curve. 
 

(iii) Higher-order curves 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2.12. Construction of Higher-order curve 
 

As  shown  in  figure  2.12,  a  higher-order  curves  one  requires  correspondingly  higher 

intermediate points. For create cubic curves, intermediate points Q0, Q1, and Q2  that express as linear 

Bezier curves, and points R0  and R1  that express as  quadratic Bezier curves. 
 

2.4.3. Rational Bezier curve 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2.13. Rational Bezier Curve 

 
The rational Bezier curve includes variable weights (w) to provide closer approximations to 

arbitrary shapes. For Rational Bezier Curve, the numerator is a weighted Bernstein form Bezier and the 

denominator is a weighted sum of Bernstein polynomials. Rational Bezier curves can be used to signify 

segments of conic sections accurately, including circular arcs (Fig.2.13). 



 

 

 

 

 

 
 

UNIT III  VISUAL REALISM         9 

Hidden – Line-Surface-Solid removal algorithms – shading – colouring – computer 
animation. 

 
 

Visual Realism 
 

 

3.1. Introduction 
 

 

Visual Realism is a method for interpreting picture data fed into a computer and for creating 

pictures from difficult multidimensional data sets. Visualization can be classified as : 

 

 Visualization in geometric modeling 
 

 Visualization in scientific computing. 
 

 

Visualization in geometric modeling is helpful in finding connection in the design applications. 

By  shading  the  parts  with  various  shadows,  colors  and  transparency,  the  designer  can  recognize 

undesired  unknown interferences. In the design of complex surfaces shading with different texture 

characteristics can use to find any undesired quick modifications in surface changes. 

 

Visualization in computing is viewed as a technique of geometric modeling. It changes the data 

in  numerical form into picture display, allowing users to view their simulations and computations. 

Visualization  offers a process of seeing the hidden. Visualization in scientific computing is of great 

interest to engineers during the design process. 

 

Existing visualization methods are: 
 

 

 Parallel projections 
 

 Perspective projection. 
 

 Hidden line removal 
 

 Hidden surface removal 
 

 Hidden solid removal 
 

 Shaded models 
 

 

Hidden line and surface removal methods remove the uncertainty of the displays of 3D models 

and is accepted the first step towards visual realism. Shaded images can only be created for surface and 



 

 

 

 

 
 

 

 

solid models. In multiple step shading process, the first step is removing the hidden surfaces / solids and 

second step is shades the visible area only. Shaded images provide the maximum level of visualization. 

 

The processes of hidden removal need huge amounts of computing times and also upper end 

hardware  services. The  creation  and  maintenance  of  such  a  models  are  become  complex.  Hence, 

creating real time images needs higher end computers with the shading algorithms embedded into the 

hardware. 

 
 

3.2. Hidden line removal 
 

Hidden line removal (HLR) is the method of computing which edges are not hidden by the faces 

of parts  for a specified view and the display of parts in the projection of a model into a 2D plane. 

Hidden line removal is utilized by a CAD to display the visual lines. It is considered that information 

openly exists to define a 2D wireframe model as well as the 3D topological information. Typically, the 

best algorithm is required for viewing this information from an available part representation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.1. Hidden line removal 
 

 

3D parts are simply manufactured and frequently happen in a CAD design of such a part. In 

addition, the degrees of freedom are adequate to show the majority of models and are not overwhelming 

in the number of constraints to be forced. Also, almost all the surface-surface intersections and shadow 

computations  can  be  calculated  analytically which results  in significant  savings  in  the number  of 

computations over numerical methods. 

 
 

3.2.1. Priority algorithm 
 

Priority algorithm is basis on organization all the polygons in the view according to the biggest 

Z-coordinate value of each. If a face intersects more than one face, other visibility tests besides the Z- 

depth required to solve any issue. This step comprises purposes of wrapper. 



 

 

 

 

 
 

 

 

Imagines that objects are modeled with lines and lines are generated where surfaces join. If only 

the visible surfaces are created then the invisible lines are automatically removed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.2. Priority algorithm 

 

Face Priority 

 

ABCE 
 

1 

 

ADFG 
 

1 

 

DCEF 
 

1 

 

ABHG 
 

2 

 

EFGH 
 

2 

 

BCEH 
 

2 

 
 
 
 

ABCD, ADFG, DCEF are given higher priority-1. Hence, all lines in this faces are visible, that 

is, AB, BC, CD, DA, AD, DF, FG, AG, DC, CE, EF and DF are visible. 

 

AGHB, EFGH, BCEH are given lower priority-2. Hence, all lines in this faces other than 

priority-1 are invisible, that is BH, EH and GH. These lines must be eliminated. 

 

 

 

 

 

 

 



 

 

 

 

 
 

3.3. Hidden surface removal 
 

 

The hidden surface removal is the procedure used to find which surfaces are not visible from a 

certain view. A hidden surface removal algorithm is a solution to the visibility issue, which was one of 

the  first  key  issues  in  the  field  of  three  dimensional  graphics.  The  procedure  of  hidden  surface 

identification is called as hiding, and such an algorithm is called a ‘hider’. Hidden surface identification 

is essential to render a 3D image properly, so that one cannot see through walls in virtual reality. 

 

Hidden surface identification is a method by which surfaces which should not be visible to the 

user are  prohibited from being rendered. In spite of benefits in hardware potential there is still a 

requirement for difficult rendering algorithms. The accountability of a rendering engine is to permit for 

bigger world spaces and as the world’s size approaches infinity the rendering engine should not slow 

down but maintain at constant speed. 

 
There are  many  methods for  hidden  surface identification. They are basically a  work out 

in sorting,  and generally vary in the order in which the  sort is executed and how the problem is 

subdivided. Sorting more values of graphics primitives is generally done by divide. 

 

3.3.1. Z - buffer algorithm 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.3. Z- buffer algorithm 
 

 

In Z-buffering, the depth of ‘Z’ value is verified against available depth value. If the present 

pixel is behind the pixel in the Z-buffer, the pixel is eliminated, or else it is shaded and its depth value 

changes the one in the Z-buffer. Z-buffering helps dynamic visuals easily, and is presently introduced 

effectively in graphics hardware. 

 
 

  Depth buffering is one of the easiest hidden surface algorithms 
 

  It keeps follow of the space to nearest object at every pixel position. 



 

 

 

 

 

 

  Initialized to most negative z value. 
 

  when image being drawn, if its z coordinate at a position is higher than z buffer value, it is 

drawn, and new z coordinate value is stored; or else, it is not drawn 

  If a line in three dimensional is being drawn, then the middle z values are interpolated: linear 

interpolation for polygons, and can calculate z for more difficult surfaces. 

 

 

Algorithm: 
 

loop on y; 
 

loop on x; 
 

zbuf[x,y] = infinity; 
 

loop on objects 
 

{ 
 

loop on y within y range of this object 
 

{ 
 

loop on x within x range of this scan line of this object 
 

{ 
 

if z(x,y) < zbuf[x,y] compute z of this object at this pixel & test 

zbuf[x,y] = z(x,y) update z-buffer 

image[x,y] = shade(x,y) update image (typically RGB) 
 

} 
 

} 
 

} 
 

Basic operations: 
 

1.   compute y range of an object 
 

2.   compute x range of a given scan line of an object 
 

3.   Calculate intersection point of a object with ray through pixel position (x,y). 
 

 
 

3.3.2. Painter’s algorithm 
 

The painter's algorithm is called as a priority fill, is one of the easiest results to the visibility 

issue in three dimensional graphics. When projecting a 3D view onto a 2D screen, it is essential at 

various points to be finalized which polygons are visible, and which polygons are hidden. 



 

 

 
 

 

 
Fig.3.4. Painter’s algorithm 

 
The ‘painter's algorithm’ shows to the method employed by most of the painters of painting 

remote  parts of a scene before parts which are close thereby hiding some areas of distant parts. The 

painter's algorithm arranges all the polygons in a view by their depth and then paints them in this order, 

extreme to closest.  It will paint over the existing parts that are usually not visible hence solving the 

visibility issue at the cost of having painted invisible areas of distant objects. The ordering used by the 

algorithm is referred a 'depth order', and does not have to respect the distances to the parts of the scene: 

the important characteristics of this ordering  is, somewhat, that if one object has ambiguous part of 

another then the first object is painted after the object that it is ambiguous. Thus, a suitable ordering can 

be explained as a topological ordering of a directed acyclic graph showing between objects. 

 
 

Algorithm: 
 

sort objects by depth, splitting if necessary to handle intersections; 
 

loop on objects (drawing from back to front) 
 

{ 
 

loop on y within y range of this object 
 

{ 
 

loop on x within x range of this scan line of this object 
 

{ 
 

image[x,y] = shade(x,y); 
 

} 
 

} 
 

} 
 

Basic operations: 
 

1.   compute ‘y’ range of an object 
 

2.   compute ‘x’ range of a given scan line of an object 
 

3.   compute intersection point of  a given object with ray via pixel point (x,y). 



 

 

 

 

 
 

 

 

4.   evaluate depth of two objects, determine if A is in front of B, or B is in front of A, if they don’t 
 

overlap in xy, or if they intersect 
 

5.   divide one object by another object 
 

 
 

Advantage of painter's algorithm is the inner loops are quite easy and limitation is sorting 

operation. 

 
 
 

3.3.3. Warnock algorithm 

 
The Warnock  algorithm is  a hidden  surface  algorithm developed  by John  Warnock that  is 

classically used in the area of graphics. It explains the issues of rendering a difficult image by recursive 

subdivision of a view until regions are attained that is trivial to evaluate. Similarly, if the view is simple 

to compute effectively then it is rendered; else it is split into tiny parts which are likewise evaluated for 

simplicity. This is a algorithm with run-time of  O(np), where  p is the number of pixels in the viewport 

and n is the number of polygons. 

 

The inputs for Warnock algorithm are detail of polygons and a viewport. The good case is that if the 

detail of polygons is very simple then creates the polygons in the viewport. The continuous step is to 

divide the viewport into four equally sized quadrants and to recursively identify the algorithm for each 

quadrant, with a polygon list changed such that it contains polygons that are detectable in that quadrant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3.5. Warnock algorithm 



 

 

 

 

 

 

1. Initialize the region. 
 

2. Generate list of polygons by sorting them with their z values. 
 

3. Remove polygons which are outside the area. 
 

4. Identify relationship of each polygon. 
 

5. Execute visibility decision analysis: 
 

a) Fill area with background color if all polygons are disjoint, 
 

b) Fill entire area with background color and fill part of polygon contained in area with color of 

polygon if there is only one contained polygon, 

c) If there is a single surrounding polygon but not contained then fill area with color of 

surrounding polygon. 

d) Set pixel to the color of polygon which is closer to view if region of the pixel (x,y) and if 

neither of (a) to (d) applies calculate z- coordinate at pixel (x,y) of polygons. 

6. If none of above is correct then subdivide the area and Go to Step 2. 
 

 

3.4. Hidden Solid Removal 
 

The hidden solid removal issue involves the view of solid models with hidden line or surface 

eliminated. Available hidden line algorithm and hidden surface algorithms are useable to hidden solid 

elimination of B-rep models. 

The following techniques to display CSG models: 
 

1.   Transfer the CSG model into a boundary model. 
 

2.   Use a spatial subdivision strategy. 
 

3.   Based on ray sorting. 
 

 
 

3.4.1. Ray-Tracing algorithm 
 

A  ray  tracing is  a  method  for  creating  an image by  tracing  the  path  of light via pixels in 

an image plane and reproducing the effects of its meets with virtual objects. The procedure is capable of 

creating a high degree of visual realism, generally higher than that of usual scan line techniques, but at a 

better computational. This creates ray tracing excellent suited for uses where the image can be rendered 

gradually ahead of time, similar   to still images and film and TV visual effects, and more badly suited 

for real time environment like video games where speed is very important. Ray tracing is simulating a 

wide range of optical effects, such as scattering, reflection and refraction. 



 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.6. Ray-Tracing algorithm 
 

 
 

Ray-Tracing algorithm 
 

 
For every pixel in image 

 

{ 
 

Generate ray from eye point passing via this pixel 
 

Initialize Nearest ‘T’ to ‘INFINITY’ 

Initialize Nearest Object to NULL 

For each object in scene 
 

{ 
 

If ray intersects this image 
 

{ 
 

If t of intersection is less than Nearest T 
 

{ 
 

Set Nearest T to t of the intersection 
 

Set Nearest image to this object 
 

} 
 

} 
 

} 
 

If Nearest image is NULL 
 

{ 
 

Paint this pixel with background color 
 

} 



 

 

 

 
 

Else 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

} 

 
 

{ 
 

Shoot a ray to every light source to check if in shadow 
 

If surface is reflective, generate reflection ray 
 

If transparent, generate refraction ray 
 

Apply Nearest Object and Nearest T to execute shading function 
 

Paint this pixel with color result of shading function 
 

} 

 
 
 
 

Optical  ray  tracing  explains  a  technique  for  creating  visual  images  constructed  in three 

dimensional graphics environments, with higher photorealism than either ray 

casting rendering practices. It executes by tracing a path from an imaginary eye via every pixel in a 

virtual display, and computing the color of the object visible via it. 

Displays in ray tracing are explained mathematically by a programmer. Displays may also 

incorporate data from 3D models and images captured like a digital photography. 

In general, every ray must be tested for intersection with a few subsets of all the objects in the 

view. Once the nearest object has been selected, the algorithm will calculate the receiving light at the 

point of intersection, study the material properties of the object, and join this information to compute the 

finishing color of  the pixel. One of the major limitations of algorithm, the reflective or translucent 

materials may need additional rays to be re-cast into the scene. 
 

 
Advantages of Ray tracing: 

 

1.   A realistic simulation of lighting over other rendering. 
 

2.   An effect such as reflections and shadows is easy and effective. 
 

3.   Simple to implement yet yielding impressive visual results. 
 

Limitation of ray tracing: 
 

Scan line algorithms use data consistency to divide computations between pixels, while ray 

tracing normally begins the process a new, treating every eye ray separately. 

 

3.5. Shading 



 

 

 

 

 
 

 
 

 
 

 

 

Shading defines to describe depth perception in three dimensioning models by different levels 

of darkness. Shading is applied in drawing for describes levels of darkness on paper by adding media 

heavy densely shade for darker regions, and less densely for lighter regions. 

 

There are  different techniques of  shading with cross  hatching where perpendicular lines of 

changing closeness are drawn in a grid pattern to shade an object. The closer the lines are combining, 

the darker the area appears. Similarly, the farther apart the lines are, the lighter the area shows. 

 
 
 
 
 
 
 
 
 
 

Fig.3.7. Shading 
 
 
 
 
 
 
 
 

 

Fig.3.8. Image with edge lines 
 

 
The image shown in figure 3.8 has the faces of the box rendered, but all in the similar color. 

 

Edge lines have been rendered here as well which creates the image easier to view. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.3.9. Image without edge lines 
 

 
 

The image shown in figure 3.9 is the same model rendered without edge lines. It is complicated 

to advise where one face of the box ends and the next starts. 



 

 

 
 

 

 
Fig.3.10. Image with Shading 

 

 
The image shown in figure 3.10 has shading enabled which makes the image extra realistic and 

makes it easier to view which face is which. 

3.5.1. Shading techniques: 
 

In computer graphics, shading submits to the procedure of changing the color of an object in the 
 

3D view, a photorealistic effect to be based on its angle to lights and its distance from lights. Shading is 

performed through the rendering procedure by a program called a ‘Shader’.  Flat shading and Smooth 

shading are the two major techniques using in Computer graphics. 

  



 

 

 

UNIT IV  ASSEMBLY OF PARTS         9 

Assembly modelling – interferences of positions and orientation – tolerance analysis-
massproperty calculations – mechanism simulation and interference checking. 

 
 

 

Assembly of parts 
 

 

4.1. Introduction 
 

In today’s global situation, two main things are significant for the industry: cost reduction and 

environment protection. Since the late 70’s it has been developed that the assembly procedure normally 

signify  one  third of the product cost. Hence, it is essential to design appropriate plans for parts 

assembly:  manufacturing, and disassembly: recycling. 

A  realistic  assembly  procedure  can  increase  efficiency,  cost  reduction  and  improve  the 

recycling of product. To overcome these problems, various simulations based on digital mock-ups of 

products are required. Even though modeling and analysis software, presently applied at various stages 

of the Product  Development Process, can suggest results to several of the above stated needs, the 

progress of a committed assembly and disassembly combine simulation stage is still a need. 

To attain an optimum assembly method, various complex software for assembly analysis and, as 

well as  simulation  programs  based  on  multi agent methods  or  which apply contact data  between 

assembly  components,  were  created.  Newly,  Virtual  Reality  (VR)  has  broadly  developed  towards 
 

Assembly realistic simulation. 
 

As the contact between objects is at the basis of the assembly simulations need 3D objects 

shapes, the contact detection is addressed here as the first step in the Assembly simulation process. The 

equivalent  procedure establishes links between shapes, contact mock-ups and component kinematics, 

which gives a basic set of meaningful data 

All  mechanical parts are applying one of the common  CAD  modelers. Thus,  the existing 

assembly modules of 3D CAD software and their definite method to modeling assemblies have a tough 

influence on how products are calculated. Also, for the realistic simulation, the data exchange CAD to 

Virtual Reality is one of the significant problems presently faced by the virtual prototyping community. 

 
 

4.2. Assembly modeling 
 

Assembly modeling is a technique applied by CAD and product visualization software systems 

to utilize multiple files that shows components within a product. The components within an assembly 

are called as solid / surface models. 

The designer usually has approach to models that others are functioning on concurrently. For 

example, different people may be creating one machine that has different components. New parts are 



 

 

extra to an assembly model as they are generated. Every designer has approach to the assembly model, 

during a work in  progress, and while working in their own components. The design development is 

noticeable to everyone participated. Based on the system, it might be essential for the users to obtain the 

most recent versions saved of every individual component to update the assembly. 

The  personal  data  files  defining  the  3D  geometry  of  personal  components  are  assembled 

together via a number of sub assembly levels to generate an assembly explaining the complete product. 

Every CAD methods support the bottom-up construction. A few systems, through associative copying 

of geometry between components allow top-down construction. Components can be situated within the 

assembly applying absolute coordinate position methods. 

Mating conditions are defines of the relative location of mechanism between each other; for 

example axis position of two holes or distance between two faces. The final place of all objects based on 

these relationships is computing using a geometry constraint engine built into the CAD package. 

The significance of assembly modeling in obtaining the full advantages of Product Life-cycle 

Management  has  directed  to  ongoing  benefits  in  this  technology.  These  contain  the  benefit  of 

lightweight data structures that accept visualization of and interaction with huge amounts of data related 

to product, interface between PDM systems and active digital mock up method that combine the skill to 

visualize the assembly mock up with the skill to design and redesign with measure, analyze and 

simulate. 

 
 

4.2.1. Assembly Concepts 
 

When components are additional to an assembly, parent and child relationships are created. 

These relationships are displayed by graphically as an assembly tree. Parts are parametrically connected 

by position  constraints. These constraints have data about how a part should be placed within the 

assembly hierarchy and how it should respond if other components are edited. 
 
 

Functioning within the framework of an assembly is prepared easier by accepting to apply more 

commands to other parts and sub-assemblies. These contain the Annotation Text, Inquire, Point, Datum 

Plane and  Pattern Component commands. Bigger assembly performance is improved by removing 

unwanted redraws and improved display management while zooming. 
 
 

  



 

 

Assembly models have additional data than simply the sum of their components. With assembly 
 

modeling interference verifies between parts and assembly specific data such as mass properties. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.1. Assembly of parts 
 

 
 

4.2.2. Bottom up Assembly design 
 

In a ‘bottom up’ assembly design, complex assemblies are divided into minor subassemblies 

and  parts.  Every part is considered as individual part by one or more designers. The parts can be 

archived in a library in one or more 3D Files. This is the high effective way to generate and manage 

complex assemblies. 

Every part is included into the active part making a component request and thus an assembly. 

The component will be the child of the active part and then it will be the active part. Hence an instance 

of the actual part is applied; it revises automatically if the archived part is edited by activating. 

 
Bottom up Hierarchy: 

The ‘bottom up’ assembly design hierarchy of the basic assembly is shown in figure 4.2. All the 

parts  exist  prior to Part1. When Part1 is generated, it becomes the active. It would utilize the menu 

sequence to add Bracket and it becomes the active part. 
 

 

Insert > Component 
 

Or 
 

Assembly Design Tool Bar > 
 

 
As per example shown in figure 4.2., ‘Bracket’ is a child of Part1. The dashed line represents 

that  ‘Bracket’ exists in the 3D file Parts  Z3. The dotted line represents that ‘Bracket’ is inserted 

into Part-1.  After Bracket is  added, Part1 is redefined. Bolt and Washer are  then  added  the  same 

process and Part-1 is reactivated again. 
 



 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.2. Bottom up Design – Part 1 

 
 

Module of subassembly is added similar as ‘Bracket’, ‘Bolt’, and ‘Washer’ again becoming a 

child of Part-1. But, because Module Subassembly already has the two items Seal and Module, they 

are added and continue as its children. 

 

Sequence of operations (Fig. 4.2.): 
 

  File-1 has 1 part. 
 

  Part-1 has 4 components. 
 

  Module Subassembly has 2 components. 
 

  All of the items are illustrations of the original parts that reside in the ZW3D file Parts Z3. 
 

  If File-1 is eliminated from the active assembly before it is saved and Part1 are removed. The 

original parts placed in the file Parts Z3 are not changed. 

  If File-1 is saved and Part1 is also saved. 
 

  If File-1 is erased and Part1 is also erased. 
 
 

 

4.2.3. Top down Assembly Design 
 

In a ‘top down’ assembly design all parts are classically designed by the similar person within a 

single  part.  3D  assembly  handles  ‘top  down’  method  by  allowing  to design  and  creation  of  a 

component while work in the active part. Hence, the active part will be an assembly part. 

The part becomes a child of the active part and then it will be the active part. The part, when 

generated, is an instance of a base part which will be a root object located in the active file. Every part is 

activated  and modified as needed. The ‘top down’ assembly design has its benefits. If the project is 

terminated or to go in a different new direction, removing the file will remove the part and all of its 



 

 

 

 

 

 

components. 
 

 
Top down Hierarchy 

 

The ‘top down’ assembly method is shown in a figure 4.3 and one of the components exist prior 

to Part-1.  When Part-1 is generated, it will be the active part. The following command sequence to 

generate Bracket and create it the active part. 

 
Assembly Design Tool Bar > 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.3. Top down Design – Part 1 
 

 
Bracket is  a  child  of Part-1.  The  dashed  line  illustrates  that  by  default  when Bracket is 

generated;  it  is  attached  to File-1.  The  dotted  line  illustrates  that Bracket is  attached  into Part-1. 

When Bracket is executed Part1 is reactivated. Bolt and Washer are then generated using the similar 

process and Part-1 is reactivated again. 
 

 

Subassembly Module is generated like the Bracket, Bolt, and Washer again will be a child 

of Part1. But, Module Subassembly remains active when seal is developed. Seal will be the active part 

and by default also exists in File-1 but is inserted into Module Subassembly hence it was active at the 



 

 

time of  seal was  created.   Subassembly Module  is  then reactivated and Module is  generated  like 

a Seal. 

 
 

Sequence of operations (Fig 4.3): 
 

  File-1 has 7. 
 

  Part-1 contains 4 components, which are illustrations of the basic parts located in File-1. 

 
 

  Subassembly Module contains 2 components which are also illustrations of the basic parts 

located in File-1. 

  If File-1 is saved it has all of its original parts. 
 

  If File-1 is erased, it and all of its basic parts are erased. 
 

 
 

4.3. Interference of position and orientation 

Designers and manufacturers should check jointly that a provided product can be assembled, 

without interference between parts, before the product to be manufactured. Similarly, all the CAD tools 

presently have the potential to directly analyze the possibility of a specified assembly plan for a product. 

An assessment of previous assembly sequence and optimization research explains that most 

previous assembly planners apply either feature-mating or interference-free techniques to find assembly 

part interference interaction. In both feature-mating and interference-free techniques focused upon the 

basic geometrical data  and  restrictions for the designed product, which are generally contained in 

connected CAD files. 

When completely automate the procedure of creating a professional assembly plan, geometrical 

information for CAD models should be automatically taken from CAD files, analyzed for interference 

relationships between components in the assembly, and then designed for utilized the assembly analysis 

tools. Most of the previous assembly sequence planners do not have the potential to complete the three 

tasks; they need users to manually input part attributes or interference data, which is so time-consuming. 

 
4.3.1. Determining Interference Relationships between Parts 

 
In automated assembly schemes, most parts are assembled along with the principal axis. Hence, 

to  fine  interference  between  parts  while  assembly,  the  projected  technique  referred  six  assembly 

directions along with the principal assembly axis: +x, -x, +y, -y, +z, and -z. But, the method could be 

improved, to think other assembly directions, as required. The projected system uses projection of part 

coordinates onto planes in three  principal axis (x, y ,z) to find the obstruction between parts sliding 

along some of the six principal assembly  axis. The projections overlap between any two parts in a 

specified axis direction shows a potential interference between the two parts, when one of the two parts 

slides  along  the  specified  direction,  with  respect  to  the  other.  Vertex  coordinates  for  overlapped 



 

 

 

 

 
 

projections are then evaluated to find if real collisions would happen  between parts with overlapped 

projections.  The  planned  process  stores  the  determined  interference  data  for  allocated  assembly 

direction in a group of interference free matrices, for compatibility with previous planners of assembly. 

 

The swept volume interference and the multiple interference detection systems are appropriate 

for  three-dimensional interference determination between B-REP entities. But, both techniques were 

developed for real-time interference detection between two moving parts in a simulation environment. 

As a result, these two techniques are expensive in computationally. For the assembly planning issue, 

actual collision finding capacity  along subjective relative motion vectors is not require. Instead, a 

efficient  computational  technique  is  required  for  finding  if  two  parts  will  collide  when  they  are 

assembled in a specified order along any one of the six principle assembly axis. 

 
 

4.2.3. Interference-free matrix 
 

An interference-free matrix shows interference between two components, when one component 

is moved, in a given assembly direction, into an assembled location, with another component already in 

an assembled location. Assembly actions that result in interferences are denoted as ‘0’ in the matrix, and 

assembly actions that do not result in interferences are denoted as ‘1’ in the matrix. 

As shown in figure 4.4., the interference-free matrix of an assembly having three parts, for 

assembly movement sliding from infinity of negative toward infinity of positive along the +x direction 

is as follows: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.4. Interference of three parts 
 

 
 

Interference-free matrix for sliding in the +x direction: 

 



 

 

 
 

 
 

The row in the Interference-free matrix indicate the components being shifted during a given 

assembly  operation, and the column indicate the parts that have previously been assembled. Hence, 

since matrix  element  (2, 1) is equal to ‘0’, if Part-1 is assembled initially, and after that Part-2 is 

assembled in the direction of +x, Part-2 will collide with Part-1. Similarly, matrix element (1, 2) is equal 

to ‘1’, if Part-2 is assembled initially, and then Part-1 is assembled in the direction of +x, Part-1 will not 

collide with Part-2. As a part cannot be assembled after itself, all elements in the diagonal matrix are set 

to ‘0’. As a whole, six matrices are utilized to show interference relationships between parts in the six 

principal  axes.  When  robotically  creating  interference-free  matrices,  the  projected  algorithm  finds 

matrix elements row by row. When two parts would interfere through assembly in a given direction, the 

program inserts a ‘0’ in the corresponding matrix position; or inserts as a ‘1’. 

 
4.4. Geometric Tolerance 

The function of geometric tolerance is to explain the engineering objective of components and 

assemblies. The datum reference frame can explain how the part.  Tolerance can accurately define the 

dimensional needs for a part, permitting over 50% more tolerance than coordinate dimensioning in a 

few  cases.  Suitable purpose of tolerance will confirm that the part described on the drawing has the 

preferred form, fit and purpose with the highest possible tolerances (Fig.4.5). 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Fig.4.5. Geometric Tolerance 
 

4.3.1. Fundamental rules for Geometric Tolerance 
 

1. All dimensions should have a tolerance. Each attribute on every manufactured component is subject 

to  change;  hence, the limits of acceptable difference must be defined. Plus and minus tolerances 



 

 

 

 

 
 

may be used to dimensions from a common tolerance block. 

2. Dimensions describe the geometry and allowable change. Measurement and scaling of the drawing 

is not permitted excluding in certain cases. 

3. Engineering drawings describe the necessities of completed parts. Each dimension and tolerance 

needed to define the completed part shall be shown on the drawing. If extra dimensions would be 

useful, but are not necessary, they may be noted as reference. 

4. Dimensions should be used to attributes and arranged in such a way as to show the purpose of the 

features.  In addition, dimensions should not be subject to more than one explanation. 

5. Descriptions of manufacturing systems should be avoided. The geometry should be explained 

without defining the technique of manufacture. 

6. If some sizes are needed during manufacturing but are not wanted in the final geometry they should 

be noticeable as non-mandatory. 

7. All dimensioning and tolerance should be placed for utmost readability and should be used to 

visible lines in true profiles. 

8. When geometry is usually restricted by code, the dimension(s) shall be integrated with code number 

in comments below the dimension. 

9. If not openly declared, all dimensions and tolerances are only suitable when the item is in free. 
 

10.  Dimensions and tolerances indicate to the full length, width, and depth. 
 

4.3.2. Tolerance Symbols 
 

Symbols for tolerances are bilateral unless otherwise defined. For example, the location of a 

hole has a tolerance of .020mm. This indicates that the hole can move +/- .010 mm, which is an equal 

bilateral tolerance. It does not consider that the hole can move +.015/-.005 mm, which is an unequal 

bilateral tolerance. (Fig.4.6.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5. Tolerance Analysis 

Fig.4.6. Symbols for Geometric Tolerance 

 

Tolerance analysis is a title to a different approaches applied in product design to know how 

deficiencies in parts as they are manufactured, and in assemblies, influence the ability of a product to 

meet  customer  needs.  Tolerance  analysis  is  a  way  of  accepting  how  basis  of  deviation  in  part 

dimensions and assembly constraints distribute across parts and assemblies, and how that total deviation 



 

 

 

 

affects  the  ability  of  a  drawing  to  reach  its  design  necessities  within  the  process  capabilities  of 

organizations and supply chains. 

Tolerance openly affects the cost and performance of products. In electrical machines, safety 

needs that the power supply to be situated a minimum gap from adjacent components, such as one more 

sheet-metal  component, in order to remove electrical short circuits. Tolerance analysis will describe 

whether the small  clearances specified will meet the safety requirement, assigned manufacturing and 

assembly variability force on the minimum clearance. 
 

 
 

4.5.1. Tolerance stack-up 
 

Tolerance stack-up computations show the collective effect of part tolerance with respect to 

an   assembly need. The tolerances ‘stacking up’ would describe to adding tolerances to obtain total part 

tolerance, then evaluating that to the existing gap in order to see if the design will work suitably. This 

simple evaluation is also defined as ‘worst case analyses’. Worst case analysis is suitable for definite 

needs where failure would signify failure for a company. It is also needful and suitable for problems that 

occupy a low number of parts. Worst case analysis is always carried out in a single direction that is a 1- 

D analysis. If the analysis has part dimensions that are not parallel to the assembly measurement being 

defined, the stack-up approach must be edited since 2D variation such as angles, or any variation that is 

not parallel with the 1-D direction, does not influence the measurement of assembly with a 1-to-1 ratio. 

The tolerance stacking issue occurs in the perception of assemblies from interchangeable parts 

because of the inability to create or join parts accurately according to nominal. Either the applicable part 

dimension  changes  around various nominal value from part by part or it is the act of assembly that 

directs to variation. For example, as two parts are combined through matching holes pair there is not 

only variation in the location of the holes relative to nominal centers on the parts but also the slippage 

difference of matching holes relative to each other when safe. 

Thus there is the opportunity that the assembly of such interacting parts will not move or won’t 

come closer as planned. This can generally be judged by different assembly criteria, say G1, G2,... Here 

we will be discussed with just one assembly criterion, say G, which can be noted as a function of the 

part dimensions L1,...,Ln. A example is shown in Figure 4.7., where n = 6 and is the clearance gap of 

interest. It finds whether the stack of cogwheels will locate within the case or not. Thus it is preferred to 

have G > 0, but for performance of functional causes one may also require to limit G. 

G = L1 − (L2 + L3 + L4 + L5 + L6) 
 

= L1 − L2 − L3 − L4 − L5 − L6 



 

 

 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.7. Tolerance Stack-up 
 

 
 

As per the example, the required lengths ‘Li ‘may vary from the nominal lengths ‘λi’ by a small 

value. If there is higher variation in the ‘Li’ there may well be important problems in accepting G > 0. 

Thus it is sensible to limit these changes via tolerances. For similar tolerances, ‘Ti’, represent an ‘upper 

limit’ on the absolute variation between actual and nominal values of the i th detail part dimension, it is 

means that |Li − λi| ≤ Ti. It is  mostly in the interpretation of this last inequality that the different 

methods of tolerance stacking vary. 

The nominal value ‘γ’of G is typically computed by replacing in equation L1 − L2 − L3 − L4 − 

L5 − L6, the actual values of Li’s by the corresponding nominal values of λi,  that is  γ = λ1 − λ2 − λ3 − 

λ4 − λ5 − λ6 . 

 
 

 



 

 

4.5.2. Statistical method for tolerance analysis (RSS) : 
 

In RSS method, tolerance stacking a significant new element is added to the assumptions, 

specifically which the detail differences from nominal are random and independent from part by part. It 

is expensive in the sense that it frequently commanded very close tolerances. That all variations from 

nominal  should dispose themselves in worst case method to defer the higher assembly tolerance is a 

relatively unlikely  proposition. On the other hand, it had the advantage of assurance the resulting 

assembly tolerance. Statistical tolerance in its typical form operates under two basic hypotheses: 

As per Centered Normal Distribution, somewhat considering that the ‘Li’ can occur anywhere 

within the tolerance distribution [λi − Ti, λi + Ti], assume that the ‘Li’ are normal random variables, that 

is change randomly according to a normal distribution, centered on that similar interval and with a ±3σ 

distribute equal to the span of that interval, hence 99.73% of all ‘Li’ values occur within this gap. As per 

the normal distribution is such that the ‘Li’ fall with upper frequency in the middle near ‘λi’ and with 

low frequency closer the interval  endpoints. The match of the ±3σ distribution with the span of the 

detail tolerance span is hypothetical to state that almost all parts will satisfy the detail tolerance limits as 

shown in figure 4.8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    
 

 
 

Fig.4.8. Centered Normal Distribution 
 

 
 

Statistical tolerance stacking formula is given below: 

 

http://www.sigmetrix.com/statistical-tolerance-analysis/


 

 

 

 

 

 

 

 

Where, ai  = ±1 for all i = 1,...,n. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4.9. RSS cube 

 

 
Typically Tstat assy  is considerably smaller than T arith assy. For n=3, the scale of this variation is 

simply visualized and valued by a rectangular box with side lengths T1, T2 and T3. To obtain from one 

corner of the box to the diagonally opposite corner, one can cross the gap  T21 + T22 + T23 along that 

diagonal and follow the three edges with lengths T1, T2, and T3 for a total length T arith assy = T1 + T2 + 

T3 as shown in figure 4.9. 
 

 
4.5.3. Second Order Tolerance Analysis 

 

Due to the manufacturing methods changing for various types of components, the distribution 

moments vary as well. RSS only applies standard deviation and does not contain the upper moments of 

skewness and kurtosis that describe the effects tool wear, form aging and other classical manufacturing 

situations. Second  Order  Tolerance Analysis includes all types of distribution moments as shown in 

figure 4.9 

 



 

 

 

 

 

 

 

 

Fig.4.9. Second order Tolerance Analysis 
 

 
Second Order Tolerance Analysis is required to find what output is going to be when the 

assembly function is not linear. In classical mechanical engineering developments kinematic changes 

and other assembly performances result in non-linear assembly operations. Second order estimates are 

more complex so manual  calculations are not suitable but the computation is greatly improved and 

becomes feasible within tolerance analysis software. 
 

 
4.5.4. Importance of Tolerance Analysis 

 

With smaller product lifecycles, quicker to market, and higher cost pressures, the uniqueness 

that distinguishes a product from its competitors. Engineers are moving to the next order of resolution in 

order to improve cycle time and quality and to reduce costs. They are showing nearer at why they did 

not get the correct part and assembly dimension values they needed from manufacturing and then are 

trying to optimize the  tolerances on the following version of the product. Optimization of tolerance 

during  design  has  a  high  impact  on  the  output  of  manufacturing,  and  better  yields  direct  impact 

on product cost and quality. Tolerance Analysis before trying to manufacture a product helps engineers 

avoid time taking iterations later in the design cycle. 

The electronics industry is attaining customer satisfaction purposes via a physical shrinking of 

their  components while adding more capabilities. As electronic devices high densely packaged, the 

significance increases to more accurately understanding the interaction of manufacturing variation and 

tolerances in design. Similarly, in the aircraft, automotive and medical device productions, liability costs 

are increasing while environmental needs are being more forcefully forced such that companies requires 

to understand high precisely what may reason a failure. 

 

Advantages of Tolerance Analysis 
 

1. Accurate part assembly. 
 

2. Elimination of assembly rework 
 

3. Improvement in assembly quality. 
 

4. Reduction of assembly cost. 
 

5. High customer satisfaction. 
 

6. Effectiveness of out-sourcing. 
 

 
Limitations of Tolerance Analysis 

 

1. Time consuming process. 
 

2. Skill require for complex assemblies. 
 

 



 

 

 

 

 

 

 
 

4.6. Mass property calculations 

The first step in finding mass properties is to set up the location of the X, Y, and Z axis. The 

correctness of the calculations will depend completely on the knowledge used in choosing the axis. 

Hypothetically, these axes can be at any position relative to the object being considered, offered the axes 

are  equally  perpendicular. But, in reality, except the axes are chosen to be at a position that can be 

precisely measured and identified, the calculations are meaningless. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.10. Accuracy of axis – Vertical 
 

 
 

As shown in the figure 4.10, the axes do not create a best reference hence a small error in 

squareness of the base of the cylinder origins the object to tilt away from the vertical axis. 

 

 

 

Fig.4.11. Accuracy of axis – Horizontal 
 

 
An axis should always pass via a surface that is firmly linked with the bulk of the component. 

As shown in the figure 4.11, it would be best to position the origin (Z=0) at the end of the component 

rather than the fitting that is freely dimensioned virtual to the end. 
 

 
 

 



 

 

 

 

 

 

4.6.1. Calculating Center of gravity location 
 

The center of gravity of an object is: 
 

 described the ‘center of mass’ of the object. 
 

 the location where the object would balance. 
 

 the  single  point  where  the  static  balance  moments  are  all  zero  about  three  mutually 

perpendicular axis. 

 the centroid of object the volume when the object is homogeneous. 
 

 the point where the total mass of the component could be measured to be concentrated while 

static calculations. 

 the point about where the component rotates in free space 
 

 the point via the gravity force can be considered to perform 
 

 the point at which an exterior force must be used to create translation of an object in space 
 

 
 

Center of gravity location is stated in units of length along the three axes (X, Y, and Z). These 

three components of the vector distance from the base of the coordinate system to the Center of gravity 

location. CG of composite masses is computed from moments considered about the origin. The essential 

dimensions of moment are Force and Distance. On the other hand, Mass moment may be utilized any 

units of Mass times Distance. For homogeneous components, volume moments may also be considered. 

Care should be taken to be confident that moments for all parts are defined in compatible units. 

Component distances for CG position may be either positive or negative, and in reality their 

polarity based on the reference axis position. The CG of a homogeneous component is determined by 

determining the Centroid of its volume. In practical, the majority of components are not homogeneous, 

so that the CG must be calculated by adding the offset moments along all of the three axes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.12. Center of Gravity 
 
 
 
 
 
 

 
  



 

 

 

 

 
 

 
 
 
 

UNIT V  CAD STANDARDS         9 

Standards for computer graphics- Graphical Kernel System (GKS) - standards for 
exchangeimages- Open   Graphics  Library  (OpenGL)  -  Data  exchange  standards  -  IGES,  
STEP,  CALSetc.  - communication standards. 

 

CAD Standards 
 

 

5.1. Introduction 
 

The purpose of CAD standard is that the CAD software should not be device-independent and 

should connect to any input device via a device driver and to any graphics display via a device drive. 

 

The  graphics  system  is  divided  into  two  parts:  the  kernel  system,  which  is  hardware 

independent and the device driver, which is hardware dependent. The kernel system, acts as a buffer 

independent and portability of the program. At interface ‘X’ , the application program calls the standard 

functions  and sub routine provided by the kernel system through what is called language bindings. 

These functions and  subroutine, call the device driver functions and subroutines at interface ‘Y’ to 

complete the task required by the application program (Fig.5.1.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5.1. Graphics Standard 



 

 

 

 

 
 

 

 
 
 
 

5.2. Various standards in graphics programming 
 
 

The following international organizations involved to develop the graphics standards: 
 
 

 ACM ( Association for Computer Machinery ) 
 

 ANSI ( American National Standards Institute ) 
 

 ISO ( International Standards Organization ) 
 

 GIN ( German Standards Institute ) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.2. Graphics Standards in Graphics Programming 
 
 
 

As a result of these international organization efforts, various standard functions at various 

levels of the graphics system developed. These are: 

1.   IGES (Initial Graphics Exchange Specification) enables an exchange of model data basis among 
 

CAD system. 
 

2.   DXF (Drawing / Data Exchange Format) file format was meant to provide an exact 

representation of the data in the standard CAD file format. 

3.   STEP  (Standard  for  the  Exchange  of  Product  model  data) can  be  used  to exchange 

data between CAD, Computer  Aided  Manufacturing  (CAM)  , Computer  Aided  Engineering 

(CAE) , product data management/enterprise data modeling (PDES) and other CAx systems. 

http://en.wikipedia.org/wiki/CAD_data_exchange
http://en.wikipedia.org/wiki/CAD_data_exchange
http://en.wikipedia.org/wiki/CAD
http://en.wikipedia.org/wiki/Computer-aided_engineering
http://en.wikipedia.org/wiki/Product_data_management
http://en.wikipedia.org/wiki/CAx


 

 

 

 

 
 

 

 

4.   CALS ( Computer Aided Acquisition and Logistic Support) is an US Department of Defense 

initiative with the aim of applying computer technology in Logistic support. 

5.   GKS (Graphics Kernel System) provides a set of drawing features for two-dimensional vector 

graphics suitable for charting and similar duties. 

6.   PHIGS ( Programmer’s Hierarchical Interactive Graphic System) The PHIGS standard defines a 

set of functions and data structures to be used by a programmer to manipulate and display 3-D 

graphical objects. 

7.   VDI (Virtual Device Interface) lies between GKS or PHIGS and the device driver code. VDI is 

now called CGI (Computer Graphics Interface). 

8.   VDM (Virtual Device Metafile) can be stored or transmitted from graphics device to another. 
 

VDM is now called CGM (Computer Graphics Metafile). 
 

9.   NAPLPS (North American Presentation- Level Protocol Syntax) describes text and graphics in 

the form of sequences of bytes in ASCII code. 

 
 

5.3. Graphics Kernel System (GKS) 
 

The Graphical Kernel System (GKS) was the first ISO standard for computer graphics in low- 

level, established in 1977. GKS offers a group of drawing aspects for 2D vector graphics appropriate for 

mapping  and  related  duties.  The  calls  are  defined  to  be  moveable  across  various  programming 

languages, graphics  hardware, so that applications noted to use GKS will be willingly portable to 

different devices and platforms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.5.3. Layers of GKS 
 

The following documents are representing GKS standards: 
 

  The language bindings are called in ISO 8651 standard. 
 

  ANSI X3.124 (1985) is part of ANSI standard. 



 

 

 

 

 

 

  ISO/IEC 7942 noted in ISO standard, first part of 1985 and two to four parts of 1997-99. 
 

  ISO 8805 and ISO 8806. 
 

 
 

The main uses of the GKS standard are: 
 

  To give for portability of application graphics programs. 
 

  To assist in the learning of graphics systems by application programmers. 
 

  To offer strategy for manufacturers in relating practical graphics capabilities. 
 
 

The GKS consists of three basic parts: 
 

i) A casual exhibition of the substances of the standard which contains such things as how text is 

placed, how polygonal zones are to be filled, and so onward. 

ii)  An official of the descriptive material in (i), by way of conceptual the ideas into separate 

functional explanations. These functional descriptions have such data as descriptions of input 

and  output  parameters,  specific  descriptions  of  the  result  of  every  function  should  have 

references into the descriptive material in (i), and a description of fault situation. The functional 

descriptions in this division are language autonomous. 

iii) Language bindings are an execution of the abstract functions explained in (ii). in a explicit 

computer language such as C. 

 
 

GKS arrange its functionality into twelve functional stages, based on the complexity of the 

graphical input and output. There are four stages of output (m, 0, 1, 2) and three stages of input (A, B, 

C). NCAR GKS has a complete execution of the GKS C bindings at level 0 A. 

 
5.3.1. GKS Output Primitives 

 
GKS is based on a number of elements that may be drawn in an object know as graphical 

primitives. The fundamental set of primitives has the word names POLYLINE, POLYMARKER, 

FILLAREA, TEXT and CELLARRAY, even though a few implementations widen this basic set. 

 
 

i) POLYLINES 
 

The  GKS  function  for  drawing  line  segments  is  called  ‘POLYLINE’.  The  ‘POLYLINE’ 

command takes an array of X-Y coordinates and creates line segments joining them. The elements that 

organize the look of a ‘POLYLINE’ are (Fig.5.3): 

  Line type :  solid, dashed or dotted. 
 

  Line width scale factor  :  thickness of the line. 



 

 

 

 

 
 

 
 

 

 

  Polyline color index :  color of the line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5.3. GKS POLYLINES 

 
ii) POLYMARKERS 

The GKS ‘POLYMARKER’ function permits to draw symbols of marker centered at coordinate 

points. The features that control the look of ‘POLYMARKERS’ are (Fig.5.4.): 
 

 Marker characters : dot, plus, asterisk, circle or cross. 

 Marker size scale factor : size of marker 

 Polymarker color index : color of the marker. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.4. GKS POLYMARKERS 
 

iii) FILLAREA 
 

The GKS ‘FILL AREA’ function permits to denote a polygonal shape of a zone to be filled with 

various interior shapes. The features that control the look of fill areas are (Fig.5.5.): 

http://ngwww.ucar.edu/gks/polymarker.html
http://ngwww.ucar.edu/gks/polymarker.html


 

 

 

 

 
 

 Text font and precision : text font should be used for the characters 

 Character expansion factor : height-to-width ratio of each character. 

 Character spacing : additional white space should be inserted between characters 

 Text color index : color the text string 

 Character height : size of the characters 

 Character up vector : angle the text 

 Text path : direction the text should be written (right, left, up, or down). 

 Text alignment : vertical and horizontal centering options for the text string. 

 

 

 
 
 
 
 

  FILL AREA interior style : solid colors, hatch patterns. 
 

  FILL AREA style index :  horizontal lines; vertical lines; left slant lines; 
 

right slant lines; horizontal and vertical lines; or left slant 

and right slant lines. 

  Fill area color index :   color of the fill patterns / solid areas. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.5. GKS FILLAREA 
 

iv) TEXT 
 

The GKS TEXT function permits to sketch a text string at a specified coordinate place. The features 

that control the look of text are: 



 

 

 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.5.6. GKS TEXT 
 

v) CELL ARRAY 
 

The GKS CELL ARRAY function shows raster like pictures in a device autonomous manner. 

The  CELL ARRAY function takes the two corner points of a rectangle that indicate, a number of 

partitions (M) in the X direction and a number of partitions (N) in the Y direction. It then partitions the 

rectangle into M x N sub rectangles noted as cells. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5.7. GKS CELL ARRAY 



 

 

 

 

5.4. Standard for exchange images 
 

A graphics standard proposed for interactive Three Dimensional applications should assure 

different  criteria.  It  should  be  introduced  on  platforms  with  changing  graphics  abilities  without 

sacrificing the  graphics quality of the primary hardware and without compromising control over the 

hardware’s function. It must offer a normal interface that permits a programmer to explain rendering 

processes quickly.  

To end with, the interface should be flexible adequate to contain additions, hence that as new 

graphics  operations become important, these operations can be given without sacrificing the original 

interface. OpenGL  meets these measures by giving a simple interface to the basic operations of 3D 

graphics  rendering.  It  supports  basic  graphics  primitives,  basic  rendering  operations  and  lighting 

calculations. It also helps advanced rendering attributes such as texture mapping. 

 

5.4.1. Open Graphics Library 
 

OpenGL draws primitives into a structured buffer focus to a various selectable modes. Every 

Point, line, polygon, or bitmap are called as a primitive. Each mode can be modified separately; the 

parameters of one do not affect the parameters of others. Modes defined, primitives detailed, and other 

OpenGL operations explained by giving commands in the form of procedure calls. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.5.7. Schematic diagram of OpenGL 
 

Figure 5.7 shows a schematic diagram of OpenGL. Commands go into OpenGL on the left. The 

majority commands may be collected in a ‘display list’ for executing at a later time. If not, commands 

are successfully sent through a pipeline for processing. 

The  first  stage  gives  an  effective  means  for  resembling  curve  and  surface  geometry  by 

estimating polynomial functions of input data. The next stage works on geometric primitives explained 



 

 

 

 

by vertices. In this stage vertices are converted, and primitives are clipped to a seeing volume in 

creation for the next stage. 

All  ‘fragment’  created  is  supplied  to  the  next  stage  that  executes  processes  on  personal 

fragments before they lastly change the structural buffer. These operations contain restricted updates 

into the structural buffer based on incoming and formerly saved depth values, combination of incoming 

colors with stored colors, as well as covering and other logical operations on fragment values.  

To end with, rectangle pixels and bitmaps by pass the vertex processing part of the pipeline to 

move a group of fragments in a straight line to the individual fragment actions, finally rooting a block of 

pixels to be  written to the frame buffer. Values can also be read back from the frame buffer or 

duplicated from one  part of the frame buffer to another. These transfers may contain several type of 

encoding or decoding. 

 
 

5.4.2. Features of OpenGL 
 

 
 

i) Based on IRIS GL 
 

OpenGL is supported on Silicon Graphics’ Integrated Rater Imaging System Graphics Library 

(IRIS  GL).  Though  it  would  have  been  potential  to  have  designed  a  totally  new  Application 

Programmer’s Interface (API), practice with IRIS GL offered insight into what programmers need and 

don’t need in a Three Dimensional graphics API. Additional, creation of OpenGL similar to Integrated 

Rater Imaging System Graphics Library where feasible builds OpenGL most likely to be admitted; there 

are various successful IRIS GL  applications, and programmers of IRIS GL will have a simple time 

switching to OpenGL. 

 
 

ii)  Low-Level 
 

A critical target of OpenGL is to offer device independence while still permitting total contact 

to  hardware. Therefore the API gives permission to graphics operations at the lowest level that still 

gives  device  independence.  Hence,  OpenGL  does  not  give  a  suggestion  for  modeling  complex 

geometric objects. 

 
 

iii) Fine-Grained Control 
 

Due to minimize the needs on how an application utilizing the Application Programmer’s 

Interface must save and present its information, the API must give a suggestion to state entity parts of 

geometric  entities  and  operations  on  them.  This  fine-grained  control  is  necessary  so  that  these 



 

 

 

 

 

 

mechanism and operations may be defined in any order and so that control of rendering operations is 

comfortable to contain the needs of various applications. 

 
 

iv) Modal 
 

A modal Application Programmer’s Interface arises in executions in which processes function 

in parallel on different primitives. In that cases, a mode modify must be transmit to all processors so that 

all collects the new parameters before it processes its next primitive. A mode change is thus developed 

serially,  stopping  primitive  processing  until  all  processors  have  collected  the  modifications,  and 

decreasing performance accordingly. 

 
 

v) Frame buffer 
 

Most of OpenGL needs that the graphics hardware has a frame buffer. This is a realistic 

condition  since almost all interactive graphics run on systems with frame buffers. Some actions in 

OpenGL are attained only during exposing their execution using a frame buffer. While OpenGL may be 

applied to give data for driving such devices as vector displays, such use is minor. 

 
 

vi) Not Programmable 
 

OpenGL does not give a programming language. Its function may be organized by turning 

actions on or off or specifying factors to operations, but the rendering algorithms are basically fixed. 

One basis for this decision is that, for performance basis, graphics hardware is generally designed to 

apply particular  operations in a defined order; changing these operations with random algorithms is 

generally  infeasible.  Programmability  would  variance  with  maintenance  of  the  API  close  to  the 

hardware and thus with the objective of maximum performance. 

 
 

vii) Geometry and Images 
 

OpenGL gives support for managing both 3D and 2D geometry. An Application Programmer’s 

Interface for utilize with geometry should also give guidance for reading, writing, and copying images, 

because geometry  and images are regularly joint, as when a Three Dimensional view is laid over a 

background  image.  Various  per-fragment  processes  that  are  applied  to  fragments  beginning  from 

geometric primitives apply uniformly well to fragments corresponding to pixels in an image, making it 

simple to mix images with geometry. 



 

 

 
 
 

 


