

SCAD ENGINEERING COLLEGE

Computer Aided Design

UNIT I FUNDAMENTALS OF COMPUTER GRAPHICS

Product cycle- Design process- sequential and concurrent engineering- Computer aided
design – CAD system architecture- Computer graphics – co-ordinate systems- 2D and 3D
transformations- homogeneous coordinates - Line drawing -Clipping- viewing transformation

1.1. Introduction of CAD

In the mid of 1970s, as computer aided design starts to offer more potential than just a skill to

replicate manual drafting with electronic drafting, the cost gain for companies to switch to CAD became

obvious. The benefit of CAD methods over manual drafting are the capabilities one often takes for

established from computer systems; automated creation of Bill of Material, interference checking, auto

layout in integrated circuits.

1.2. Product cycle

Product cycle integrate processes, people, data, and business and gives a product information

for industries and their extended activity. Product cycle is the process of managing the entire lifecycle of

a product from starting, through design and manufacture, to repair and removal of manufactured

products.

Product cycle methods assist association in managing with the rising difficulty and engineering

challenges of developing new products for the worldwide competitive markets.

Product lifecycle management (PLM) can be part of one of the following four fundamentals of a

manufacturing information technology structure.

(i) Customer Relationship Management (CRM)

(ii) Supply Chain Management (SCM)

(iii) Enterprise resource planning (ERP)

(iv) Product Planning and Development (PPD).

The core of PLM is in the formation and management of all product information and the

technology used to access this data and knowledge. PLM as a discipline appeared from tools such

as CAD, CAM and PDM, but can be viewed as the combination of these tools with processes, methods

and people through all stages of a product’s life cycle. PLM is not just about software technology but is

also a business approach.

1.2.1. Product Cycle Model

There are several Product cycle models in industry to be considered, one of the possible product

cycle is given below (Fig.1.1.):

Fig.1.1. Product Cycle Model

Step 1: Conceive

Imagine, Specify, Plan, Innovate

The first step is the definition of the product requirements based on company, market and

customer. From this requirement, the product's technical data can be defined. In parallel, the early

concept design work is performed defining the product with its main functional features. Various media

are utilized for these processes, from paper and pencil to clay mock-up to 3D Computer Aided Industrial

Design.

Step 2: Design

Describe, Define, Develop, Test, Analyze and Validate

This is where the completed design and development of the product begins, succeeding to

prototype testing, through pilot release to final product. It can also involve redesign and ramp for

improvement to existing products as well as planned obsolescence. The main tool used for design and

development is CAD. This can be simple 2D drawing / drafting or 3D parametric feature based

solid/surface modeling.

This step covers many engineering disciplines including: electronic, electrical, mechanical, and

civil. Besides the actual making of geometry there is the analysis of the components and assemblies.

Optimization, Validation and Simulation activities are carried out using Computer Aided

Engineering (CAE) software. These are used to perform various tasks such as: Computational Fluid

Dynamics (CFD); Finite Element Analysis (FEA); and Mechanical Event Simulation (MES). Computer

Aided Quality (CAQ) is used for activities such as Dimensional tolerance analysis. One more task

carried out at this step is the sourcing of bought out components with the aid of procurement process.

Step 3: Realize

Manufacture, Make, Build, Procure, Produce, Sell and Deliver

Once the design of the components is complete the method of manufacturing is finalized. This

includes CAD operations such as generation of CNC Machining instructions for the product’s

component as well as tools to manufacture those components, using integrated Computer Aided

Manufacturing (CAM) software.

It includes Production Planning tools for carrying out plant and factory layout and production

simulation. Once details components are manufactured their geometrical form and dimensions can be

verified against the original data with the use of Computer Aided Inspection Equipment (CAIE).

Parallel to the engineering tasks, sales and marketing work take place. This could consist of transferring

engineering data to a web based sales configuration.

Step 4: Service

Use, Operate, Maintain, Support, Sustain, Phase-out, Retire, Recycle and Disposal

The final step of the lifecycle includes managing of information related to service for repair and

maintenance, as well as recycling and waste management information. This involves using tools like

Maintenance, Repair and Operations Management software.

1.3. Design Process

The design process includes series of steps that engineers apply in making functional products

and processes. The parts of the process often need to be repeated many times before production of a

product can start. The parts that get iterated and the number of such design cycles in any given project

can be highly changeable.

One method of the engineering design process focuses on the following common aspects:

http://en.wikipedia.org/wiki/Tolerance_(engineering)

1. Research

Fig.1.2. Design Process

A considerable amount of time is used on research, or finding information. Consideration

should be given to the available applicable literature, issues and successes linked with avaialbe

solutions, and need of marketplaces.

The basis of information should be significant, including existing results. Reverse

engineering can be a successful technique if other solutions are available in the market. Added sources

of information include the trade journals, available government documents, local libraries, vendor

catalogs and personal organizations.

2. Feasibility assessment

The feasibility study is an analysis and assessment of the possible of a proposed design which is

based on detail investigation and research to maintain the process of decision creation. The feasibility

assessment helps to focus the scope of the project to spot the best situation. The purpose of a feasibility

assessment is to verify whether the project can continue into the design phase.

3. Conceptualization

A Concept Study is the stage of project planning that includes developing ideas and taking into

account the all features of executing those ideas. This stage of a project is done to reduce the likelihood

of assess risks, error and evaluate the potential success of the planned project.

4. Establishing the design requirements

Establishing design requirements is one of the most essential elements in the design

practice, and this task is usually performed at the same time as the feasibility analysis. The design

requirements control the design of the project all over the engineering design process. A few design

requirements comprise maintainability, hardware and software parameters, availability, and testability.

5. Preliminary design

The preliminary design fills the gap between the design concept and the detailed design phase.

During this task, the system configuration is defined, and schematics, diagrams, and layouts of the

project will offer early project configuration. In detailed design and optimization, the parameters of the

part being produced will change, but the preliminary design focuses on creating the common framework

to construct the project.

6. Detailed design

The next phase of preliminary design is the Detailed Design which may includes of

procurement also. This phase builds on the already developed preliminary design, aiming to further

develop each phase of the project by total description through drawings, modeling as well as

specifications.

The advancement CAD programs have made the detailed design phase more competent. This is

because a CAD program can offer optimization, where it can shrink volume without compromising the

part's quality. It can also calculate displacement and stress using the FEM to find stresses throughout the

part. It is the responsibility of designer to find whether these stresses and displacements are acceptable,

so the part is safe.

7. Production planning and tool design

The production planning and tool design is more than planning how to mass-produce the project

and which tools should be used in the manufacturing of the component. Tasks to complete in this stage

include material selection, identification of the production processes, finalization of the sequence of

operations, and selection of jigs, fixtures, and tooling. This stage also includes testing a working

prototype to confirm the created part meets qualification standards.

With the finishing of qualification testing and prototype testing, the design process is

completed.

1.4. Sequential and Concurrent Engineering

Fig. 1.3. Sequential Vs Concurrent Engineering

Table 1.1. Sequential Vs Concurrent Engineering

Sequential Engineering Concurrent Engineering

Sequential engineering is the term used to

explain the method of production in a

linear system. The various steps are done

one after another, with all attention and

resources focused on that single task.

In concurrent engineering, various tasks are

handled at the same time, and not essentially

in the standard order. This means that info

found out later in the course can be added to

earlier parts, improving them, and also saving

time.

Sequential engineering is a system by

which a group within an organization

works sequentially to create new products

and services.

Concurrent engineering is a method by which

several groups within an organization work

simultaneously to create new products and

services.

The sequential engineering is a linear

product design process during which all

stages of manufacturing operate in serial.

The concurrent engineering is a non-linear

product design process during which all stages

of manufacturing operate at the same time.

Both process and product design run in

serial and take place in the different time.

Both product and process design run in

parallel and take place in the same time.

Process and Product are not matched to

attain optimal matching.

Process and Product are coordinated to

attain optimal matching of requirements for

effective quality and delivery.

Decision making done by only group of

experts.

Decision making involves full team

involvement.

1.5. Computer Aided Design

CAD is the intersection of Computer Graphics, Geometric modeling and Design tools (Fig.1.4.).

The concepts of computer graphics and geometric modeling and must be used innovatively to serve the

design process.

CAD is the function of computer systems to support in the creation, modification, analysis, or

optimization of a design. CAD software is used to raise the productivity of the designer, progress the

Fig. 1.4. CAD

CAD software for design uses either vector-based graphics to explain the objects of traditional

drafting, or may also develop raster graphics showing the overall look of designed objects. During the

manual drafting of engineering drawings, the output of CAD must convey information, like dimensions,

materials, processes, and tolerances.

CAD is a significant industrial art used in many purposes, including industrial and architectural

design, shipbuilding, automotive, and aerospace industries, and many more. CAD is also extensively

used to create computer animation for special effects in movies, and technical manuals, frequently

called as Digital Content Creation.

CAD software packages provide the designer with a multi window environment with animation

which is regularly used in Digital Content Creation. The animations using wire frame modeling helps

the designer to see into the interior of object and to observe the behaviors of the inner components of the

assembly during the motion.

1.5.1. CAD Technology

Initially software for CAD systems was developed with computer languages such

as FORTRAN but with the development of object-oriented programming methods this has completely

changed. Classic modern parametric attribute based modeler and freeform surface systems are

developing around a number of key ‘C’ modules.

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Freeform_surface
http://en.wikipedia.org/wiki/C_(programming_language)

A CAD system can be seen as develop from the interaction of a Graphical User Interface (GUI)

with NURBS geometry and Boundary representation data through a kernel for geometric modeling. A

geometry constraint engine may also be employed to organize the associative relationships between

components in an assembly.

Unexpected facilities of these relationships have led to a new form of prototyping called digital

prototyping. In difference to physical prototypes, which involve manufacturing time in the design. CAD

models can be created by a computer after the physical prototype has been scanned using an CT

scanning device. Based on the nature of the business, digital or physical prototypes can be primarily

selected according to specific requirements.

Currently, no special hardware is required for CAD software. However, some special CAD

systems can do graphically and computationally intensive tasks, so a higher end graphics card, high

speed CPUs may be suggested. CAD systems exist for all the major platforms and some packages even

perform multiple platforms.

The human-machine interface is generally through a mouse but can also be using a

digitizing graphics tablet. Handling of the view of the part on the screen is also sometimes done with the

help of a Space mouse or Space Ball. Special CAD systems also support stereoscopic glasses

for viewing the 3D objects.

1.5.2. CAD Tools

The CAD tools are mainly using for graphics applications and modeling. Aids such a color,

grids, geometric modifiers and group facilitate structural geometric models. Visualization is achieved

through shaded components and animation which focus design conceptualization, communication and

interference detection. FEM packages provide optimization in shape and structure. Adding tolerances,

tolerance analysis and investigating the effect of manufacturing on the design can perform by utilizing

CAD tools (Table 1.2).

Table 1.2. CAD Tools Vs Design Process

CAD Tools Design Process

Geometric modeling, Graphics aids, visualization and

manipulation

Conceptualization

http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/NURBS
http://en.wikipedia.org/wiki/Geometric_modeling_kernel
http://en.wikipedia.org/wiki/Prototyping
http://en.wikipedia.org/wiki/Digital_prototyping
http://en.wikipedia.org/wiki/Digital_prototyping
http://en.wikipedia.org/wiki/Digital_prototyping
http://en.wikipedia.org/wiki/Industrial_CT_scanning
http://en.wikipedia.org/wiki/Industrial_CT_scanning
http://en.wikipedia.org/wiki/Industrial_CT_scanning
http://en.wikipedia.org/wiki/Graphics_card
http://en.wikipedia.org/wiki/Computer_mouse
http://en.wikipedia.org/wiki/Scientific_visualization

Geometric modeling, Graphics aids, visualization and

manipulation, animation, assemblies

Modeling and

Simulation

Analysis packages, customized programs Design Analysis

Structural optimization Design Optimization

Dimensioning, tolerance, bill of materials Design evaluation

Drafting and detailing, Shaded images Communication and

Documentation

1.5.3. Uses of CAD

CAD is one of the tools used by designers and engineers and is used in different ways

depending on the profession of the customer and the type of software.

CAD is one of the Digital Product Development activities within the Product Lifecycle

Management practices with other tools, which are either integrated modules or individual, such as:

 Computer Aided engineering (CAE) and Finite Element Analysis (FEA)

 Computer Aided Manufacturing (CAM)

 Realistic Rendering and Simulation.

 Product Data Management (PDM).

CAD is also used for the development of photo simulations that are frequently necessary in the

preparation of Environmental Impact Reports, in which proposed CAD buildings are superimposed into

photographs of existing situation to represent what that conditions will be like, where the proposed

services are allowed to be built.

Parameters and constraints can be used to get the size, shape, and other properties of the

modeling elements. The features of the CAD system can be used for the several tools for measurement

such as yield strength, tensile strength and electrical or electro-magnetic properties.

1.6. CAD System Architecture

Computer architecture is a pattern describing how a group of software and hardware technology

standards relate to form a computer system. In general, computer architecture refers to how a computer

is designed and what technologies it is compatible with. Computer architecture is likened to the art of

shaping the needs of the technology, and developing a logical design and standards based on needs.

In CAD, Computer architecture is a set of disciplines that explains the functionality, the

organization and the introduction of computer systems; that is, it describes the capabilities of a computer

and its programming method in a summary way, and how the internal organization of the system is

http://en.wikipedia.org/wiki/Product_Lifecycle_Management
http://en.wikipedia.org/wiki/Product_Lifecycle_Management
http://en.wikipedia.org/wiki/Computer-aided_engineering
http://en.wikipedia.org/wiki/Finite_element_analysis
http://en.wikipedia.org/wiki/Computer-aided_manufacturing

designed and executed to meet the specified facilities. Computer architecture engages different aspects,

including instruction set architecture design, logic design, and implementation. The implementation

includes Integrated Circuit Design, Power, and Cooling. Optimization of the design needs expertise with

Compilers, Operating Systems and Packaging.

1. Instruction set architecture

An instruction set architecture is the interface between the software and hardware and also can be

observed as the programmer's view of the machine. Computers do not understand high level languages,

if any, language elements that translate directly into a machine's native op codes. A processor

UNIT II GEOMETRIC MODELING 9

Representation of curves- Hermite curve- Bezier curve- B-spline curves-rational curves-
Techniques for surface modeling – surface patch- Coons and bicubic patches- Bezier and B-
spline surfaces. Solid modeling techniques- CSG and B-rep

Geometric Modeling

2.1. Introduction

Geometric modeling is a part of computational geometry and applied mathematics that studies

algorithms and techniques for the mathematical description of shapes.

The shapes defined in geometric modeling are generally 2D or 3D, even though several of its

principles and tools can be used to sets of any finite dimension. Geometric modeling is created with

computer based applications. 2D models are significant in computer technical drawing and

typography. 3D models are fundamental to CAD and CAM and extensively used in many applied

technical branches such as civil engineering and mechanical engineering and medical image processing.

Geometric models are commonly differentiated from object oriented models and procedural,

which describe the shape perfectly by an opaque algorithm that creates its appearance. They are also

compared with volumetric models and digital images which shows the shape as a subset of a regular

partition of space; and with fractal models that provide an infinitely recursive description of the shape.

Though, these differences are often fuzzy: for example, a image can be interpreted as a collection

of colored squares; and geometric shape of circles are defined by implicit mathematical equations. Also,

a fractal model gives a parametric model when its recursive description is truncated to a finite depth.

2.2. Representation of curves

A curve is an entity related to a line but which is not required to be straight. A curve is

a topological space which is internally homeomorphism to a line; this shows that a curve is a set of

points which close to each of its points looks like a line, up to a deformation.

A conic section is a curve created as the intersection of a cone with a plane. In analytic

geometry, a conic may be described as a plane algebraic curve of degree two, and as

a quadric of dimension two.

There are several of added geometric definitions possible. One of the most practical, in that it

involves only the plane, is that a non circular conic has those points whose distances to various point,

called a ‘focus’, and several line, called a ‘directrix’, are in a fixed ratio, called the ‘eccentricity’.

2.2.1.Conic Section

Conventionally, the three kinds of conic section are the hyperbola, the ellipse and the parabola.

The circle is a unique case of the ellipse, and is of adequate interest in its own right that it is sometimes

described the fourth kind of conic section. The method of a conic relates to its ‘eccentricity’, those with

eccentricity less than one is ellipses, those with eccentricity equal to one is parabolas, and those with

eccentricity greater than one is hyperbolas. In the focus, directrix describes a conic the circle is a

limiting with eccentricity zero. In modern geometry some degenerate methods, such as the combination

of two lines, are integrated as conics as well.

Fig.2.1. Conic sections

The three kinds of conic sections are the ellipse, parabola, and hyperbola. The circle can be

taken as a fourth kind of ellipse. The circle and the ellipse occur when the intersection of plane and cone

is a closed curve. The circle is generated when the cutting plane is parallel to the generating of the cone.

If the cutting plane is parallel to accurately one generating line of the cone, then the conic is unbounded

and is mentioned a parabola. In the other case, the figure is a hyperbola.

Different factors are connected with a conic section, as shown in the Table 2.1. For the ellipse,

the table shows the case of ‘a’ > ‘b’, for which the major axis is horizontal; for the other case,

interchange the symbols ‘a’ and ‘b’. For the hyperbola the east-west opening case is specified. In all

cases, ‘a’ and ‘b’ are positive.

Table 2.1. Conic Sections

The non-circular conic sections are accurately those curves that, for a point ‘F’, a line ‘L’ not

having ‘F’ and a number ‘e’ which is non-negative, are the locus of points whose distance

to ‘F’ equals ‘e’ multiplies their distance to ‘L’. ‘F’ is called the focus, ‘L’ the directrix,

and ‘e’ the eccentricity.

i. Linear eccentricity (c) is the space between the center and the focus.

ii. Latus rectum (2l) is parallel to the directrix and passing via the focus.

iii. Semi-latus rectum (l) is half the latus rectum.

iv. Focal parameter (p) is the distance from the focus to the directrix.

The relationship for the above : p*e = l and a*e=c.

2.3. Hermite curve

A Hermite curve is a spline where every piece is a third degree polynomial defined in Hermite

form: that is, by its values and initial derivatives at the end points of the equivalent domain interval.

Cubic Hermite splines are normally used for interpolation of numeric values defined at certain dispute

values x1,x2,x3, ….., xn, to achieve a smooth continuous function. The data should have the preferred

function value and derivative at each Xk. The Hermite formula is used to every interval (Xk,

Xk+1) individually. The resulting spline become continuous and will have first derivative.

Cubic polynomial splines are specially used in computer geometric modeling to

attain curves that pass via defined points of the plane in 3D space. In these purposes, each coordinate of

the plane is individually interpolated by a cubic spline function of a divided parameter‘t’.

Cubic splines can be completed to functions of different parameters, in several ways. Bicubic

splines are frequently used to interpolate data on a common rectangular grid, such as pixel values in

a digital picture. Bicubic surface patches, described by three bicubic splines, are an necessary tool in

computer graphics. Hermite curves are simple to calculate but also more powerful. They are used to

well interpolate between key points.

Fig.2.2. Hermite curve

The following vectors needs to compute a Hermite curve:

 P1: the start point of the Hermite curve

 T1: the tangent to the start point

 P2: the endpoint of the Hermite curve

 T2: the tangent to the endpoint

These four vectors are basically multiplied with four Hermite basis functions h1(s), h2(s), h3(s)

and,h4(s) and added together.

h1(s) = 2s
3

- 3s
2

+ 1

h2(s) = -2s
3

+ 3s
2

h3(s) = s
3

- 2s
2

+ s

h4(s) = s
3

- s
2

Figure 2.3 shows the functions of Hermite Curve of the 4 functions (from left to right: h1, h2, h3, h4).

Fig.2.3. Functions of Hermite curve

A closer view at functions ‘h1’ and ‘h2’, the result shows that function ‘h1’ starts at one and

goes slowly to zero and function ‘h2’ starts at zero and goes slowly to one.

At the moment, multiply the start point with function ‘h1’ and the endpoint with function ‘h2’.

Let s varies from zero to one to interpolate between start and endpoint of Hermite Curve. Function

‘h3’ and function ‘h4’ are used to the tangents in the similar way. They make confident that the Hermite

curve bends in the desired direction at the start and endpoint.

2.4. Bezier curve

Bezier curves are extensively applied in CAD to model smooth curves. As the curve is totally

limited in the convex hull of its control points P0, P1,P2 & P3, the points can be graphically represented

and applied to manipulate the curve logically. The control points P0 and P3 of the polygon lie on the

curve (Fig.2.4.). The other two vertices described the order, derivatives and curve shape. The Bezier

curve is commonly tangent to first and last vertices.

Cubic Bezier curves and Quadratic Bezier curves are very common. Higher degree Bezier

curves are highly computational to evaluate. When more complex shapes are required, Bezier curves in

low order are patched together to produce a composite Bezier curve. A composite Bezier curve is

usually described to as a ‘path’ in vector graphics standards and programs. For smoothness assurance,

the control point at which two curves meet should be on the line between the two control points on both

sides.

Fig.2.4. Bezier curve

A general adaptive method is recursive subdivision, in which a curve's control points are

verified to view if the curve approximates a line segment to within a low tolerance. If not, the curve is

further divided parametrically into two segments, 0 ≤ t ≤ 0.5 and 0.5 ≤ t ≤ 1, and the same process is

used recursively to each half. There are future promote differencing techniques, but more care must be

taken to analyze error transmission.

Analytical methods where a Bezier is intersected with every scan line engage finding roots of

cubic polynomials and having with multiple roots, so they are not often applied in practice. A Bezier

curve is described by a set of control points P0 through Pn, where ‘n’ is order of curve. The initial and

end control points are commonly the end points of the curve; but, the intermediate control points

normally do not lie on the curve.

(i) Linear Bezier curves

2.5. Linear Bezier curve

As shown in the figure 2.5, the given points P0 and P1, a linear Bezier curve is merely a straight

line between those two points. The Bezier curve is represented by

And it is similar to linear interpolation.

(ii) Quadratic Bezier curves

Fig.2.6. Quadratic Bezier curve

As shown in the figure 2.6, a quadratic Bezier curve is the path defined by the function B(t),

given points P0, P1, and P2,

,

This can be interpreted as the linear interpolate of respective points on the linear Bezier curves

from P0 to P1 and from P1 to P2 respectively. Reshuffle the preceding equation gives:

The derivative of the Bezier curve with respect to the value ‘t’ is

From which it can be finished that the tangents to the curve at P0 and P2 intersect at P1. While

‘t’ increases from zero to one, the curve departs from P0 in the direction of P1, then turns to land

at P2 from the direction of P1.

The following equation is a second derivative of the Bezier curve with respect to ‘t’:

A quadratic Bezier curve is represent a parabolic segment. Since a parabola curve is a conic

section, a few sources refer to quadratic Beziers as ‘conic arcs’.

(iii) Cubic Bezier curves

As shown in figure 2.7, four control points P0, P1, P2 and P3 in the higher-dimensional space

describe as a Cubic Bezier curve. The curve begins at P0 going on the way to P1 and reaches at P3

coming from the direction of P2. Typically, it will not pass through control points P1 / P2, these points

are only there to give directional data. The distance between P0 and P1 determines ‘how fast’ and ‘how

far’ the curve travels towards P1 before turning towards P2.

Fig.2.7. Cubic Bezier curve

The function B Pi, Pj, Pk (t) for the quadratic Bezier curve written by points Pi, Pj, and Pk, the

cubic Bezier curve can be described as a linear blending of two quadratic Bezier curves:

The open form of the curve is:

For several choices of P1 and P2 the Bezier curve may meet itself.

Any sequence of any four dissimilar points can be changed to a cubic Bezier curve that goes via

all four points in order. Given the beginning and ending point of a few cubic Bezier curve, and the

http://en.wikipedia.org/wiki/Parabola

points beside the curve equivalent to t = 1/3 and t = 2/3, the control points for the original Bezier curve

can be improved.

The following equation represent first derivative of the cubic Bezier curve with respect to t:

The following equation represent second derivative of the Bezier curve with respect to t:

2.4.1. Properties Bezier curve

 The Bezier curve starts at P0 and ends at Pn; this is known as ‘endpoint interpolation’ property.

 The Bezier curve is a straight line when all the control points of a cure are collinear.

 The beginning of the Bezier curve is tangent to the first portion of the Bezier polygon.

 A Bezier curve can be divided at any point into two sub curves, each of which is also a Bezier

curve.

 A few curves that look like simple, such as the circle, cannot be expressed accurately by a Bezier;

via four piece cubic Bezier curve can similar a circle, with a maximum radial error of less than one

part in a thousand (Fig.2.8).

Fig.2.8. Circular Bezier curve

 Each quadratic Bezier curve is become a cubic Bezier curve, and more commonly, each

degree ‘n’ Bezier curve is also a degree ‘m’ curve for any m > n.

 Bezier curves have the different diminishing property. A Bezier curves does not ‘ripple’ more than

the polygon of its control points, and may actually ‘ripple’ less than that.

 Bezier curve is similar with respect to t and (1-t). This represents that the sequence of control points

defining the curve can be changes without modify of the curve shape.

 Bezier curve shape can be edited by either modifying one or more vertices of its polygon or by

keeping the polygon unchanged or simplifying multiple coincident points at a vertex (Fig .2.19).

2.9. Bezier curve shape

2.4.2. Construction of Bezier curves

(i) Linear curves:

Fig.2.10. Construction of linear Bezier curve

The figure 2.10 shows the function for a linear Bezier curve can be via of as describing how

far B(t) is from P0 to P1 with respect to ‘t’. When t equals to 0.25, B(t) is one quarter of the way from

point P0 to P1. As ‘t’ varies from 0 to 1, B(t) shows a straight line from P0 to P1.

(ii) Quadratic curves

Fig.2.11. Construction of linear Quadratic curve

As shown in figure 2.11, a quadratic Bezier curves one can develop by intermediate

points Q0 and Q1 such that as ‘t’ varies from 0 to 1:

 Point Q0 (t) modifying from P0 to P1 and expresses a linear Bezier curve.

 Point Q1 (t) modifying from P1 to P2 and expresses a linear Bezier curve.

 Point B (t) is interpolated linearly between Q0(t) to Q1(t) and expresses a quadratic Bezier curve.

(iii) Higher-order curves

Fig.2.12. Construction of Higher-order curve

As shown in figure 2.12, a higher-order curves one requires correspondingly higher

intermediate points. For create cubic curves, intermediate points Q0, Q1, and Q2 that express as linear

Bezier curves, and points R0 and R1 that express as quadratic Bezier curves.

2.4.3. Rational Bezier curve

Fig.2.13. Rational Bezier Curve

The rational Bezier curve includes variable weights (w) to provide closer approximations to

arbitrary shapes. For Rational Bezier Curve, the numerator is a weighted Bernstein form Bezier and the

denominator is a weighted sum of Bernstein polynomials. Rational Bezier curves can be used to signify

segments of conic sections accurately, including circular arcs (Fig.2.13).

UNIT III VISUAL REALISM 9

Hidden – Line-Surface-Solid removal algorithms – shading – colouring – computer
animation.

Visual Realism

3.1. Introduction

Visual Realism is a method for interpreting picture data fed into a computer and for creating

pictures from difficult multidimensional data sets. Visualization can be classified as :

 Visualization in geometric modeling

 Visualization in scientific computing.

Visualization in geometric modeling is helpful in finding connection in the design applications.

By shading the parts with various shadows, colors and transparency, the designer can recognize

undesired unknown interferences. In the design of complex surfaces shading with different texture

characteristics can use to find any undesired quick modifications in surface changes.

Visualization in computing is viewed as a technique of geometric modeling. It changes the data

in numerical form into picture display, allowing users to view their simulations and computations.

Visualization offers a process of seeing the hidden. Visualization in scientific computing is of great

interest to engineers during the design process.

Existing visualization methods are:

 Parallel projections

 Perspective projection.

 Hidden line removal

 Hidden surface removal

 Hidden solid removal

 Shaded models

Hidden line and surface removal methods remove the uncertainty of the displays of 3D models

and is accepted the first step towards visual realism. Shaded images can only be created for surface and

solid models. In multiple step shading process, the first step is removing the hidden surfaces / solids and

second step is shades the visible area only. Shaded images provide the maximum level of visualization.

The processes of hidden removal need huge amounts of computing times and also upper end

hardware services. The creation and maintenance of such a models are become complex. Hence,

creating real time images needs higher end computers with the shading algorithms embedded into the

hardware.

3.2. Hidden line removal

Hidden line removal (HLR) is the method of computing which edges are not hidden by the faces

of parts for a specified view and the display of parts in the projection of a model into a 2D plane.

Hidden line removal is utilized by a CAD to display the visual lines. It is considered that information

openly exists to define a 2D wireframe model as well as the 3D topological information. Typically, the

best algorithm is required for viewing this information from an available part representation.

Fig.3.1. Hidden line removal

3D parts are simply manufactured and frequently happen in a CAD design of such a part. In

addition, the degrees of freedom are adequate to show the majority of models and are not overwhelming

in the number of constraints to be forced. Also, almost all the surface-surface intersections and shadow

computations can be calculated analytically which results in significant savings in the number of

computations over numerical methods.

3.2.1. Priority algorithm

Priority algorithm is basis on organization all the polygons in the view according to the biggest

Z-coordinate value of each. If a face intersects more than one face, other visibility tests besides the Z-

depth required to solve any issue. This step comprises purposes of wrapper.

Imagines that objects are modeled with lines and lines are generated where surfaces join. If only

the visible surfaces are created then the invisible lines are automatically removed.

Fig.3.2. Priority algorithm

Face Priority

ABCE

1

ADFG

1

DCEF

1

ABHG

2

EFGH

2

BCEH

2

ABCD, ADFG, DCEF are given higher priority-1. Hence, all lines in this faces are visible, that

is, AB, BC, CD, DA, AD, DF, FG, AG, DC, CE, EF and DF are visible.

AGHB, EFGH, BCEH are given lower priority-2. Hence, all lines in this faces other than

priority-1 are invisible, that is BH, EH and GH. These lines must be eliminated.

3.3. Hidden surface removal

The hidden surface removal is the procedure used to find which surfaces are not visible from a

certain view. A hidden surface removal algorithm is a solution to the visibility issue, which was one of

the first key issues in the field of three dimensional graphics. The procedure of hidden surface

identification is called as hiding, and such an algorithm is called a ‘hider’. Hidden surface identification

is essential to render a 3D image properly, so that one cannot see through walls in virtual reality.

Hidden surface identification is a method by which surfaces which should not be visible to the

user are prohibited from being rendered. In spite of benefits in hardware potential there is still a

requirement for difficult rendering algorithms. The accountability of a rendering engine is to permit for

bigger world spaces and as the world’s size approaches infinity the rendering engine should not slow

down but maintain at constant speed.

There are many methods for hidden surface identification. They are basically a work out

in sorting, and generally vary in the order in which the sort is executed and how the problem is

subdivided. Sorting more values of graphics primitives is generally done by divide.

3.3.1. Z - buffer algorithm

Fig.3.3. Z- buffer algorithm

In Z-buffering, the depth of ‘Z’ value is verified against available depth value. If the present

pixel is behind the pixel in the Z-buffer, the pixel is eliminated, or else it is shaded and its depth value

changes the one in the Z-buffer. Z-buffering helps dynamic visuals easily, and is presently introduced

effectively in graphics hardware.

 Depth buffering is one of the easiest hidden surface algorithms

 It keeps follow of the space to nearest object at every pixel position.

 Initialized to most negative z value.

 when image being drawn, if its z coordinate at a position is higher than z buffer value, it is

drawn, and new z coordinate value is stored; or else, it is not drawn

 If a line in three dimensional is being drawn, then the middle z values are interpolated: linear

interpolation for polygons, and can calculate z for more difficult surfaces.

Algorithm:

loop on y;

loop on x;

zbuf[x,y] = infinity;

loop on objects

{

loop on y within y range of this object

{

loop on x within x range of this scan line of this object

{

if z(x,y) < zbuf[x,y] compute z of this object at this pixel & test

zbuf[x,y] = z(x,y) update z-buffer

image[x,y] = shade(x,y) update image (typically RGB)

}

}

}

Basic operations:

1. compute y range of an object

2. compute x range of a given scan line of an object

3. Calculate intersection point of a object with ray through pixel position (x,y).

3.3.2. Painter’s algorithm

The painter's algorithm is called as a priority fill, is one of the easiest results to the visibility

issue in three dimensional graphics. When projecting a 3D view onto a 2D screen, it is essential at

various points to be finalized which polygons are visible, and which polygons are hidden.

Fig.3.4. Painter’s algorithm

The ‘painter's algorithm’ shows to the method employed by most of the painters of painting

remote parts of a scene before parts which are close thereby hiding some areas of distant parts. The

painter's algorithm arranges all the polygons in a view by their depth and then paints them in this order,

extreme to closest. It will paint over the existing parts that are usually not visible hence solving the

visibility issue at the cost of having painted invisible areas of distant objects. The ordering used by the

algorithm is referred a 'depth order', and does not have to respect the distances to the parts of the scene:

the important characteristics of this ordering is, somewhat, that if one object has ambiguous part of

another then the first object is painted after the object that it is ambiguous. Thus, a suitable ordering can

be explained as a topological ordering of a directed acyclic graph showing between objects.

Algorithm:

sort objects by depth, splitting if necessary to handle intersections;

loop on objects (drawing from back to front)

{

loop on y within y range of this object

{

loop on x within x range of this scan line of this object

{

image[x,y] = shade(x,y);

}

}

}

Basic operations:

1. compute ‘y’ range of an object

2. compute ‘x’ range of a given scan line of an object

3. compute intersection point of a given object with ray via pixel point (x,y).

4. evaluate depth of two objects, determine if A is in front of B, or B is in front of A, if they don’t

overlap in xy, or if they intersect

5. divide one object by another object

Advantage of painter's algorithm is the inner loops are quite easy and limitation is sorting

operation.

3.3.3. Warnock algorithm

The Warnock algorithm is a hidden surface algorithm developed by John Warnock that is

classically used in the area of graphics. It explains the issues of rendering a difficult image by recursive

subdivision of a view until regions are attained that is trivial to evaluate. Similarly, if the view is simple

to compute effectively then it is rendered; else it is split into tiny parts which are likewise evaluated for

simplicity. This is a algorithm with run-time of O(np), where p is the number of pixels in the viewport

and n is the number of polygons.

The inputs for Warnock algorithm are detail of polygons and a viewport. The good case is that if the

detail of polygons is very simple then creates the polygons in the viewport. The continuous step is to

divide the viewport into four equally sized quadrants and to recursively identify the algorithm for each

quadrant, with a polygon list changed such that it contains polygons that are detectable in that quadrant.

Fig.3.5. Warnock algorithm

1. Initialize the region.

2. Generate list of polygons by sorting them with their z values.

3. Remove polygons which are outside the area.

4. Identify relationship of each polygon.

5. Execute visibility decision analysis:

a) Fill area with background color if all polygons are disjoint,

b) Fill entire area with background color and fill part of polygon contained in area with color of

polygon if there is only one contained polygon,

c) If there is a single surrounding polygon but not contained then fill area with color of

surrounding polygon.

d) Set pixel to the color of polygon which is closer to view if region of the pixel (x,y) and if

neither of (a) to (d) applies calculate z- coordinate at pixel (x,y) of polygons.

6. If none of above is correct then subdivide the area and Go to Step 2.

3.4. Hidden Solid Removal

The hidden solid removal issue involves the view of solid models with hidden line or surface

eliminated. Available hidden line algorithm and hidden surface algorithms are useable to hidden solid

elimination of B-rep models.

The following techniques to display CSG models:

1. Transfer the CSG model into a boundary model.

2. Use a spatial subdivision strategy.

3. Based on ray sorting.

3.4.1. Ray-Tracing algorithm

A ray tracing is a method for creating an image by tracing the path of light via pixels in

an image plane and reproducing the effects of its meets with virtual objects. The procedure is capable of

creating a high degree of visual realism, generally higher than that of usual scan line techniques, but at a

better computational. This creates ray tracing excellent suited for uses where the image can be rendered

gradually ahead of time, similar to still images and film and TV visual effects, and more badly suited

for real time environment like video games where speed is very important. Ray tracing is simulating a

wide range of optical effects, such as scattering, reflection and refraction.

Fig.3.6. Ray-Tracing algorithm

Ray-Tracing algorithm

For every pixel in image

{

Generate ray from eye point passing via this pixel

Initialize Nearest ‘T’ to ‘INFINITY’

Initialize Nearest Object to NULL

For each object in scene

{

If ray intersects this image

{

If t of intersection is less than Nearest T

{

Set Nearest T to t of the intersection

Set Nearest image to this object

}

}

}

If Nearest image is NULL

{

Paint this pixel with background color

}

Else

}

{

Shoot a ray to every light source to check if in shadow

If surface is reflective, generate reflection ray

If transparent, generate refraction ray

Apply Nearest Object and Nearest T to execute shading function

Paint this pixel with color result of shading function

}

Optical ray tracing explains a technique for creating visual images constructed in three

dimensional graphics environments, with higher photorealism than either ray

casting rendering practices. It executes by tracing a path from an imaginary eye via every pixel in a

virtual display, and computing the color of the object visible via it.

Displays in ray tracing are explained mathematically by a programmer. Displays may also

incorporate data from 3D models and images captured like a digital photography.

In general, every ray must be tested for intersection with a few subsets of all the objects in the

view. Once the nearest object has been selected, the algorithm will calculate the receiving light at the

point of intersection, study the material properties of the object, and join this information to compute the

finishing color of the pixel. One of the major limitations of algorithm, the reflective or translucent

materials may need additional rays to be re-cast into the scene.

Advantages of Ray tracing:

1. A realistic simulation of lighting over other rendering.

2. An effect such as reflections and shadows is easy and effective.

3. Simple to implement yet yielding impressive visual results.

Limitation of ray tracing:

Scan line algorithms use data consistency to divide computations between pixels, while ray

tracing normally begins the process a new, treating every eye ray separately.

3.5. Shading

Shading defines to describe depth perception in three dimensioning models by different levels

of darkness. Shading is applied in drawing for describes levels of darkness on paper by adding media

heavy densely shade for darker regions, and less densely for lighter regions.

There are different techniques of shading with cross hatching where perpendicular lines of

changing closeness are drawn in a grid pattern to shade an object. The closer the lines are combining,

the darker the area appears. Similarly, the farther apart the lines are, the lighter the area shows.

Fig.3.7. Shading

Fig.3.8. Image with edge lines

The image shown in figure 3.8 has the faces of the box rendered, but all in the similar color.

Edge lines have been rendered here as well which creates the image easier to view.

Fig.3.9. Image without edge lines

The image shown in figure 3.9 is the same model rendered without edge lines. It is complicated

to advise where one face of the box ends and the next starts.

Fig.3.10. Image with Shading

The image shown in figure 3.10 has shading enabled which makes the image extra realistic and

makes it easier to view which face is which.

3.5.1. Shading techniques:

In computer graphics, shading submits to the procedure of changing the color of an object in the

3D view, a photorealistic effect to be based on its angle to lights and its distance from lights. Shading is

performed through the rendering procedure by a program called a ‘Shader’. Flat shading and Smooth

shading are the two major techniques using in Computer graphics.

UNIT IV ASSEMBLY OF PARTS 9

Assembly modelling – interferences of positions and orientation – tolerance analysis-
massproperty calculations – mechanism simulation and interference checking.

Assembly of parts

4.1. Introduction

In today’s global situation, two main things are significant for the industry: cost reduction and

environment protection. Since the late 70’s it has been developed that the assembly procedure normally

signify one third of the product cost. Hence, it is essential to design appropriate plans for parts

assembly: manufacturing, and disassembly: recycling.

A realistic assembly procedure can increase efficiency, cost reduction and improve the

recycling of product. To overcome these problems, various simulations based on digital mock-ups of

products are required. Even though modeling and analysis software, presently applied at various stages

of the Product Development Process, can suggest results to several of the above stated needs, the

progress of a committed assembly and disassembly combine simulation stage is still a need.

To attain an optimum assembly method, various complex software for assembly analysis and, as

well as simulation programs based on multi agent methods or which apply contact data between

assembly components, were created. Newly, Virtual Reality (VR) has broadly developed towards

Assembly realistic simulation.

As the contact between objects is at the basis of the assembly simulations need 3D objects

shapes, the contact detection is addressed here as the first step in the Assembly simulation process. The

equivalent procedure establishes links between shapes, contact mock-ups and component kinematics,

which gives a basic set of meaningful data

All mechanical parts are applying one of the common CAD modelers. Thus, the existing

assembly modules of 3D CAD software and their definite method to modeling assemblies have a tough

influence on how products are calculated. Also, for the realistic simulation, the data exchange CAD to

Virtual Reality is one of the significant problems presently faced by the virtual prototyping community.

4.2. Assembly modeling

Assembly modeling is a technique applied by CAD and product visualization software systems

to utilize multiple files that shows components within a product. The components within an assembly

are called as solid / surface models.

The designer usually has approach to models that others are functioning on concurrently. For

example, different people may be creating one machine that has different components. New parts are

extra to an assembly model as they are generated. Every designer has approach to the assembly model,

during a work in progress, and while working in their own components. The design development is

noticeable to everyone participated. Based on the system, it might be essential for the users to obtain the

most recent versions saved of every individual component to update the assembly.

The personal data files defining the 3D geometry of personal components are assembled

together via a number of sub assembly levels to generate an assembly explaining the complete product.

Every CAD methods support the bottom-up construction. A few systems, through associative copying

of geometry between components allow top-down construction. Components can be situated within the

assembly applying absolute coordinate position methods.

Mating conditions are defines of the relative location of mechanism between each other; for

example axis position of two holes or distance between two faces. The final place of all objects based on

these relationships is computing using a geometry constraint engine built into the CAD package.

The significance of assembly modeling in obtaining the full advantages of Product Life-cycle

Management has directed to ongoing benefits in this technology. These contain the benefit of

lightweight data structures that accept visualization of and interaction with huge amounts of data related

to product, interface between PDM systems and active digital mock up method that combine the skill to

visualize the assembly mock up with the skill to design and redesign with measure, analyze and

simulate.

4.2.1. Assembly Concepts

When components are additional to an assembly, parent and child relationships are created.

These relationships are displayed by graphically as an assembly tree. Parts are parametrically connected

by position constraints. These constraints have data about how a part should be placed within the

assembly hierarchy and how it should respond if other components are edited.

Functioning within the framework of an assembly is prepared easier by accepting to apply more

commands to other parts and sub-assemblies. These contain the Annotation Text, Inquire, Point, Datum

Plane and Pattern Component commands. Bigger assembly performance is improved by removing

unwanted redraws and improved display management while zooming.

Assembly models have additional data than simply the sum of their components. With assembly

modeling interference verifies between parts and assembly specific data such as mass properties.

Fig.4.1. Assembly of parts

4.2.2. Bottom up Assembly design

In a ‘bottom up’ assembly design, complex assemblies are divided into minor subassemblies

and parts. Every part is considered as individual part by one or more designers. The parts can be

archived in a library in one or more 3D Files. This is the high effective way to generate and manage

complex assemblies.

Every part is included into the active part making a component request and thus an assembly.

The component will be the child of the active part and then it will be the active part. Hence an instance

of the actual part is applied; it revises automatically if the archived part is edited by activating.

Bottom up Hierarchy:

The ‘bottom up’ assembly design hierarchy of the basic assembly is shown in figure 4.2. All the

parts exist prior to Part1. When Part1 is generated, it becomes the active. It would utilize the menu

sequence to add Bracket and it becomes the active part.

Insert > Component

Or

Assembly Design Tool Bar >

As per example shown in figure 4.2., ‘Bracket’ is a child of Part1. The dashed line represents

that ‘Bracket’ exists in the 3D file Parts Z3. The dotted line represents that ‘Bracket’ is inserted

into Part-1. After Bracket is added, Part1 is redefined. Bolt and Washer are then added the same

process and Part-1 is reactivated again.

Fig.4.2. Bottom up Design – Part 1

Module of subassembly is added similar as ‘Bracket’, ‘Bolt’, and ‘Washer’ again becoming a

child of Part-1. But, because Module Subassembly already has the two items Seal and Module, they

are added and continue as its children.

Sequence of operations (Fig. 4.2.):

 File-1 has 1 part.

 Part-1 has 4 components.

 Module Subassembly has 2 components.

 All of the items are illustrations of the original parts that reside in the ZW3D file Parts Z3.

 If File-1 is eliminated from the active assembly before it is saved and Part1 are removed. The

original parts placed in the file Parts Z3 are not changed.

 If File-1 is saved and Part1 is also saved.

 If File-1 is erased and Part1 is also erased.

4.2.3. Top down Assembly Design

In a ‘top down’ assembly design all parts are classically designed by the similar person within a

single part. 3D assembly handles ‘top down’ method by allowing to design and creation of a

component while work in the active part. Hence, the active part will be an assembly part.

The part becomes a child of the active part and then it will be the active part. The part, when

generated, is an instance of a base part which will be a root object located in the active file. Every part is

activated and modified as needed. The ‘top down’ assembly design has its benefits. If the project is

terminated or to go in a different new direction, removing the file will remove the part and all of its

components.

Top down Hierarchy

The ‘top down’ assembly method is shown in a figure 4.3 and one of the components exist prior

to Part-1. When Part-1 is generated, it will be the active part. The following command sequence to

generate Bracket and create it the active part.

Assembly Design Tool Bar >

Fig.4.3. Top down Design – Part 1

Bracket is a child of Part-1. The dashed line illustrates that by default when Bracket is

generated; it is attached to File-1. The dotted line illustrates that Bracket is attached into Part-1.

When Bracket is executed Part1 is reactivated. Bolt and Washer are then generated using the similar

process and Part-1 is reactivated again.

Subassembly Module is generated like the Bracket, Bolt, and Washer again will be a child

of Part1. But, Module Subassembly remains active when seal is developed. Seal will be the active part

and by default also exists in File-1 but is inserted into Module Subassembly hence it was active at the

time of seal was created. Subassembly Module is then reactivated and Module is generated like

a Seal.

Sequence of operations (Fig 4.3):

 File-1 has 7.

 Part-1 contains 4 components, which are illustrations of the basic parts located in File-1.

 Subassembly Module contains 2 components which are also illustrations of the basic parts

located in File-1.

 If File-1 is saved it has all of its original parts.

 If File-1 is erased, it and all of its basic parts are erased.

4.3. Interference of position and orientation

Designers and manufacturers should check jointly that a provided product can be assembled,

without interference between parts, before the product to be manufactured. Similarly, all the CAD tools

presently have the potential to directly analyze the possibility of a specified assembly plan for a product.

An assessment of previous assembly sequence and optimization research explains that most

previous assembly planners apply either feature-mating or interference-free techniques to find assembly

part interference interaction. In both feature-mating and interference-free techniques focused upon the

basic geometrical data and restrictions for the designed product, which are generally contained in

connected CAD files.

When completely automate the procedure of creating a professional assembly plan, geometrical

information for CAD models should be automatically taken from CAD files, analyzed for interference

relationships between components in the assembly, and then designed for utilized the assembly analysis

tools. Most of the previous assembly sequence planners do not have the potential to complete the three

tasks; they need users to manually input part attributes or interference data, which is so time-consuming.

4.3.1. Determining Interference Relationships between Parts

In automated assembly schemes, most parts are assembled along with the principal axis. Hence,

to fine interference between parts while assembly, the projected technique referred six assembly

directions along with the principal assembly axis: +x, -x, +y, -y, +z, and -z. But, the method could be

improved, to think other assembly directions, as required. The projected system uses projection of part

coordinates onto planes in three principal axis (x, y ,z) to find the obstruction between parts sliding

along some of the six principal assembly axis. The projections overlap between any two parts in a

specified axis direction shows a potential interference between the two parts, when one of the two parts

slides along the specified direction, with respect to the other. Vertex coordinates for overlapped

projections are then evaluated to find if real collisions would happen between parts with overlapped

projections. The planned process stores the determined interference data for allocated assembly

direction in a group of interference free matrices, for compatibility with previous planners of assembly.

The swept volume interference and the multiple interference detection systems are appropriate

for three-dimensional interference determination between B-REP entities. But, both techniques were

developed for real-time interference detection between two moving parts in a simulation environment.

As a result, these two techniques are expensive in computationally. For the assembly planning issue,

actual collision finding capacity along subjective relative motion vectors is not require. Instead, a

efficient computational technique is required for finding if two parts will collide when they are

assembled in a specified order along any one of the six principle assembly axis.

4.2.3. Interference-free matrix

An interference-free matrix shows interference between two components, when one component

is moved, in a given assembly direction, into an assembled location, with another component already in

an assembled location. Assembly actions that result in interferences are denoted as ‘0’ in the matrix, and

assembly actions that do not result in interferences are denoted as ‘1’ in the matrix.

As shown in figure 4.4., the interference-free matrix of an assembly having three parts, for

assembly movement sliding from infinity of negative toward infinity of positive along the +x direction

is as follows:

Fig.4.4. Interference of three parts

Interference-free matrix for sliding in the +x direction:

The row in the Interference-free matrix indicate the components being shifted during a given

assembly operation, and the column indicate the parts that have previously been assembled. Hence,

since matrix element (2, 1) is equal to ‘0’, if Part-1 is assembled initially, and after that Part-2 is

assembled in the direction of +x, Part-2 will collide with Part-1. Similarly, matrix element (1, 2) is equal

to ‘1’, if Part-2 is assembled initially, and then Part-1 is assembled in the direction of +x, Part-1 will not

collide with Part-2. As a part cannot be assembled after itself, all elements in the diagonal matrix are set

to ‘0’. As a whole, six matrices are utilized to show interference relationships between parts in the six

principal axes. When robotically creating interference-free matrices, the projected algorithm finds

matrix elements row by row. When two parts would interfere through assembly in a given direction, the

program inserts a ‘0’ in the corresponding matrix position; or inserts as a ‘1’.

4.4. Geometric Tolerance

The function of geometric tolerance is to explain the engineering objective of components and

assemblies. The datum reference frame can explain how the part. Tolerance can accurately define the

dimensional needs for a part, permitting over 50% more tolerance than coordinate dimensioning in a

few cases. Suitable purpose of tolerance will confirm that the part described on the drawing has the

preferred form, fit and purpose with the highest possible tolerances (Fig.4.5).

Fig.4.5. Geometric Tolerance

4.3.1. Fundamental rules for Geometric Tolerance

1. All dimensions should have a tolerance. Each attribute on every manufactured component is subject

to change; hence, the limits of acceptable difference must be defined. Plus and minus tolerances

may be used to dimensions from a common tolerance block.

2. Dimensions describe the geometry and allowable change. Measurement and scaling of the drawing

is not permitted excluding in certain cases.

3. Engineering drawings describe the necessities of completed parts. Each dimension and tolerance

needed to define the completed part shall be shown on the drawing. If extra dimensions would be

useful, but are not necessary, they may be noted as reference.

4. Dimensions should be used to attributes and arranged in such a way as to show the purpose of the

features. In addition, dimensions should not be subject to more than one explanation.

5. Descriptions of manufacturing systems should be avoided. The geometry should be explained

without defining the technique of manufacture.

6. If some sizes are needed during manufacturing but are not wanted in the final geometry they should

be noticeable as non-mandatory.

7. All dimensioning and tolerance should be placed for utmost readability and should be used to

visible lines in true profiles.

8. When geometry is usually restricted by code, the dimension(s) shall be integrated with code number

in comments below the dimension.

9. If not openly declared, all dimensions and tolerances are only suitable when the item is in free.

10. Dimensions and tolerances indicate to the full length, width, and depth.

4.3.2. Tolerance Symbols

Symbols for tolerances are bilateral unless otherwise defined. For example, the location of a

hole has a tolerance of .020mm. This indicates that the hole can move +/- .010 mm, which is an equal

bilateral tolerance. It does not consider that the hole can move +.015/-.005 mm, which is an unequal

bilateral tolerance. (Fig.4.6.).

4.5. Tolerance Analysis

Fig.4.6. Symbols for Geometric Tolerance

Tolerance analysis is a title to a different approaches applied in product design to know how

deficiencies in parts as they are manufactured, and in assemblies, influence the ability of a product to

meet customer needs. Tolerance analysis is a way of accepting how basis of deviation in part

dimensions and assembly constraints distribute across parts and assemblies, and how that total deviation

affects the ability of a drawing to reach its design necessities within the process capabilities of

organizations and supply chains.

Tolerance openly affects the cost and performance of products. In electrical machines, safety

needs that the power supply to be situated a minimum gap from adjacent components, such as one more

sheet-metal component, in order to remove electrical short circuits. Tolerance analysis will describe

whether the small clearances specified will meet the safety requirement, assigned manufacturing and

assembly variability force on the minimum clearance.

4.5.1. Tolerance stack-up

Tolerance stack-up computations show the collective effect of part tolerance with respect to

an assembly need. The tolerances ‘stacking up’ would describe to adding tolerances to obtain total part

tolerance, then evaluating that to the existing gap in order to see if the design will work suitably. This

simple evaluation is also defined as ‘worst case analyses’. Worst case analysis is suitable for definite

needs where failure would signify failure for a company. It is also needful and suitable for problems that

occupy a low number of parts. Worst case analysis is always carried out in a single direction that is a 1-

D analysis. If the analysis has part dimensions that are not parallel to the assembly measurement being

defined, the stack-up approach must be edited since 2D variation such as angles, or any variation that is

not parallel with the 1-D direction, does not influence the measurement of assembly with a 1-to-1 ratio.

The tolerance stacking issue occurs in the perception of assemblies from interchangeable parts

because of the inability to create or join parts accurately according to nominal. Either the applicable part

dimension changes around various nominal value from part by part or it is the act of assembly that

directs to variation. For example, as two parts are combined through matching holes pair there is not

only variation in the location of the holes relative to nominal centers on the parts but also the slippage

difference of matching holes relative to each other when safe.

Thus there is the opportunity that the assembly of such interacting parts will not move or won’t

come closer as planned. This can generally be judged by different assembly criteria, say G1, G2,... Here

we will be discussed with just one assembly criterion, say G, which can be noted as a function of the

part dimensions L1,...,Ln. A example is shown in Figure 4.7., where n = 6 and is the clearance gap of

interest. It finds whether the stack of cogwheels will locate within the case or not. Thus it is preferred to

have G > 0, but for performance of functional causes one may also require to limit G.

G = L1 − (L2 + L3 + L4 + L5 + L6)

= L1 − L2 − L3 − L4 − L5 − L6

Fig.4.7. Tolerance Stack-up

As per the example, the required lengths ‘Li ‘may vary from the nominal lengths ‘λi’ by a small

value. If there is higher variation in the ‘Li’ there may well be important problems in accepting G > 0.

Thus it is sensible to limit these changes via tolerances. For similar tolerances, ‘Ti’, represent an ‘upper

limit’ on the absolute variation between actual and nominal values of the i th detail part dimension, it is

means that |Li − λi| ≤ Ti. It is mostly in the interpretation of this last inequality that the different

methods of tolerance stacking vary.

The nominal value ‘γ’of G is typically computed by replacing in equation L1 − L2 − L3 − L4 −

L5 − L6, the actual values of Li’s by the corresponding nominal values of λi, that is γ = λ1 − λ2 − λ3 −

λ4 − λ5 − λ6 .

4.5.2. Statistical method for tolerance analysis (RSS) :

In RSS method, tolerance stacking a significant new element is added to the assumptions,

specifically which the detail differences from nominal are random and independent from part by part. It

is expensive in the sense that it frequently commanded very close tolerances. That all variations from

nominal should dispose themselves in worst case method to defer the higher assembly tolerance is a

relatively unlikely proposition. On the other hand, it had the advantage of assurance the resulting

assembly tolerance. Statistical tolerance in its typical form operates under two basic hypotheses:

As per Centered Normal Distribution, somewhat considering that the ‘Li’ can occur anywhere

within the tolerance distribution [λi − Ti, λi + Ti], assume that the ‘Li’ are normal random variables, that

is change randomly according to a normal distribution, centered on that similar interval and with a ±3σ

distribute equal to the span of that interval, hence 99.73% of all ‘Li’ values occur within this gap. As per

the normal distribution is such that the ‘Li’ fall with upper frequency in the middle near ‘λi’ and with

low frequency closer the interval endpoints. The match of the ±3σ distribution with the span of the

detail tolerance span is hypothetical to state that almost all parts will satisfy the detail tolerance limits as

shown in figure 4.8.

Fig.4.8. Centered Normal Distribution

Statistical tolerance stacking formula is given below:

http://www.sigmetrix.com/statistical-tolerance-analysis/

Where, ai = ±1 for all i = 1,...,n.

Fig.4.9. RSS cube

Typically Tstat assy is considerably smaller than T arith assy. For n=3, the scale of this variation is

simply visualized and valued by a rectangular box with side lengths T1, T2 and T3. To obtain from one

corner of the box to the diagonally opposite corner, one can cross the gap T21 + T22 + T23 along that

diagonal and follow the three edges with lengths T1, T2, and T3 for a total length T arith assy = T1 + T2 +

T3 as shown in figure 4.9.

4.5.3. Second Order Tolerance Analysis

Due to the manufacturing methods changing for various types of components, the distribution

moments vary as well. RSS only applies standard deviation and does not contain the upper moments of

skewness and kurtosis that describe the effects tool wear, form aging and other classical manufacturing

situations. Second Order Tolerance Analysis includes all types of distribution moments as shown in

figure 4.9

Fig.4.9. Second order Tolerance Analysis

Second Order Tolerance Analysis is required to find what output is going to be when the

assembly function is not linear. In classical mechanical engineering developments kinematic changes

and other assembly performances result in non-linear assembly operations. Second order estimates are

more complex so manual calculations are not suitable but the computation is greatly improved and

becomes feasible within tolerance analysis software.

4.5.4. Importance of Tolerance Analysis

With smaller product lifecycles, quicker to market, and higher cost pressures, the uniqueness

that distinguishes a product from its competitors. Engineers are moving to the next order of resolution in

order to improve cycle time and quality and to reduce costs. They are showing nearer at why they did

not get the correct part and assembly dimension values they needed from manufacturing and then are

trying to optimize the tolerances on the following version of the product. Optimization of tolerance

during design has a high impact on the output of manufacturing, and better yields direct impact

on product cost and quality. Tolerance Analysis before trying to manufacture a product helps engineers

avoid time taking iterations later in the design cycle.

The electronics industry is attaining customer satisfaction purposes via a physical shrinking of

their components while adding more capabilities. As electronic devices high densely packaged, the

significance increases to more accurately understanding the interaction of manufacturing variation and

tolerances in design. Similarly, in the aircraft, automotive and medical device productions, liability costs

are increasing while environmental needs are being more forcefully forced such that companies requires

to understand high precisely what may reason a failure.

Advantages of Tolerance Analysis

1. Accurate part assembly.

2. Elimination of assembly rework

3. Improvement in assembly quality.

4. Reduction of assembly cost.

5. High customer satisfaction.

6. Effectiveness of out-sourcing.

Limitations of Tolerance Analysis

1. Time consuming process.

2. Skill require for complex assemblies.

4.6. Mass property calculations

The first step in finding mass properties is to set up the location of the X, Y, and Z axis. The

correctness of the calculations will depend completely on the knowledge used in choosing the axis.

Hypothetically, these axes can be at any position relative to the object being considered, offered the axes

are equally perpendicular. But, in reality, except the axes are chosen to be at a position that can be

precisely measured and identified, the calculations are meaningless.

Fig.4.10. Accuracy of axis – Vertical

As shown in the figure 4.10, the axes do not create a best reference hence a small error in

squareness of the base of the cylinder origins the object to tilt away from the vertical axis.

Fig.4.11. Accuracy of axis – Horizontal

An axis should always pass via a surface that is firmly linked with the bulk of the component.

As shown in the figure 4.11, it would be best to position the origin (Z=0) at the end of the component

rather than the fitting that is freely dimensioned virtual to the end.

4.6.1. Calculating Center of gravity location

The center of gravity of an object is:

 described the ‘center of mass’ of the object.

 the location where the object would balance.

 the single point where the static balance moments are all zero about three mutually

perpendicular axis.

 the centroid of object the volume when the object is homogeneous.

 the point where the total mass of the component could be measured to be concentrated while

static calculations.

 the point about where the component rotates in free space

 the point via the gravity force can be considered to perform

 the point at which an exterior force must be used to create translation of an object in space

Center of gravity location is stated in units of length along the three axes (X, Y, and Z). These

three components of the vector distance from the base of the coordinate system to the Center of gravity

location. CG of composite masses is computed from moments considered about the origin. The essential

dimensions of moment are Force and Distance. On the other hand, Mass moment may be utilized any

units of Mass times Distance. For homogeneous components, volume moments may also be considered.

Care should be taken to be confident that moments for all parts are defined in compatible units.

Component distances for CG position may be either positive or negative, and in reality their

polarity based on the reference axis position. The CG of a homogeneous component is determined by

determining the Centroid of its volume. In practical, the majority of components are not homogeneous,

so that the CG must be calculated by adding the offset moments along all of the three axes.

Fig.4.12. Center of Gravity

UNIT V CAD STANDARDS 9

Standards for computer graphics- Graphical Kernel System (GKS) - standards for
exchangeimages- Open Graphics Library (OpenGL) - Data exchange standards - IGES,
STEP, CALSetc. - communication standards.

CAD Standards

5.1. Introduction

The purpose of CAD standard is that the CAD software should not be device-independent and

should connect to any input device via a device driver and to any graphics display via a device drive.

The graphics system is divided into two parts: the kernel system, which is hardware

independent and the device driver, which is hardware dependent. The kernel system, acts as a buffer

independent and portability of the program. At interface ‘X’ , the application program calls the standard

functions and sub routine provided by the kernel system through what is called language bindings.

These functions and subroutine, call the device driver functions and subroutines at interface ‘Y’ to

complete the task required by the application program (Fig.5.1.).

Fig.5.1. Graphics Standard

5.2. Various standards in graphics programming

The following international organizations involved to develop the graphics standards:

 ACM (Association for Computer Machinery)

 ANSI (American National Standards Institute)

 ISO (International Standards Organization)

 GIN (German Standards Institute)

Fig.5.2. Graphics Standards in Graphics Programming

As a result of these international organization efforts, various standard functions at various

levels of the graphics system developed. These are:

1. IGES (Initial Graphics Exchange Specification) enables an exchange of model data basis among

CAD system.

2. DXF (Drawing / Data Exchange Format) file format was meant to provide an exact

representation of the data in the standard CAD file format.

3. STEP (Standard for the Exchange of Product model data) can be used to exchange

data between CAD, Computer Aided Manufacturing (CAM) , Computer Aided Engineering

(CAE) , product data management/enterprise data modeling (PDES) and other CAx systems.

http://en.wikipedia.org/wiki/CAD_data_exchange
http://en.wikipedia.org/wiki/CAD_data_exchange
http://en.wikipedia.org/wiki/CAD
http://en.wikipedia.org/wiki/Computer-aided_engineering
http://en.wikipedia.org/wiki/Product_data_management
http://en.wikipedia.org/wiki/CAx

4. CALS (Computer Aided Acquisition and Logistic Support) is an US Department of Defense

initiative with the aim of applying computer technology in Logistic support.

5. GKS (Graphics Kernel System) provides a set of drawing features for two-dimensional vector

graphics suitable for charting and similar duties.

6. PHIGS (Programmer’s Hierarchical Interactive Graphic System) The PHIGS standard defines a

set of functions and data structures to be used by a programmer to manipulate and display 3-D

graphical objects.

7. VDI (Virtual Device Interface) lies between GKS or PHIGS and the device driver code. VDI is

now called CGI (Computer Graphics Interface).

8. VDM (Virtual Device Metafile) can be stored or transmitted from graphics device to another.

VDM is now called CGM (Computer Graphics Metafile).

9. NAPLPS (North American Presentation- Level Protocol Syntax) describes text and graphics in

the form of sequences of bytes in ASCII code.

5.3. Graphics Kernel System (GKS)

The Graphical Kernel System (GKS) was the first ISO standard for computer graphics in low-

level, established in 1977. GKS offers a group of drawing aspects for 2D vector graphics appropriate for

mapping and related duties. The calls are defined to be moveable across various programming

languages, graphics hardware, so that applications noted to use GKS will be willingly portable to

different devices and platforms.

Fig.5.3. Layers of GKS

The following documents are representing GKS standards:

 The language bindings are called in ISO 8651 standard.

 ANSI X3.124 (1985) is part of ANSI standard.

 ISO/IEC 7942 noted in ISO standard, first part of 1985 and two to four parts of 1997-99.

 ISO 8805 and ISO 8806.

The main uses of the GKS standard are:

 To give for portability of application graphics programs.

 To assist in the learning of graphics systems by application programmers.

 To offer strategy for manufacturers in relating practical graphics capabilities.

The GKS consists of three basic parts:

i) A casual exhibition of the substances of the standard which contains such things as how text is

placed, how polygonal zones are to be filled, and so onward.

ii) An official of the descriptive material in (i), by way of conceptual the ideas into separate

functional explanations. These functional descriptions have such data as descriptions of input

and output parameters, specific descriptions of the result of every function should have

references into the descriptive material in (i), and a description of fault situation. The functional

descriptions in this division are language autonomous.

iii) Language bindings are an execution of the abstract functions explained in (ii). in a explicit

computer language such as C.

GKS arrange its functionality into twelve functional stages, based on the complexity of the

graphical input and output. There are four stages of output (m, 0, 1, 2) and three stages of input (A, B,

C). NCAR GKS has a complete execution of the GKS C bindings at level 0 A.

5.3.1. GKS Output Primitives

GKS is based on a number of elements that may be drawn in an object know as graphical

primitives. The fundamental set of primitives has the word names POLYLINE, POLYMARKER,

FILLAREA, TEXT and CELLARRAY, even though a few implementations widen this basic set.

i) POLYLINES

The GKS function for drawing line segments is called ‘POLYLINE’. The ‘POLYLINE’

command takes an array of X-Y coordinates and creates line segments joining them. The elements that

organize the look of a ‘POLYLINE’ are (Fig.5.3):

 Line type : solid, dashed or dotted.

 Line width scale factor : thickness of the line.

 Polyline color index : color of the line.

Fig.5.3. GKS POLYLINES

ii) POLYMARKERS

The GKS ‘POLYMARKER’ function permits to draw symbols of marker centered at coordinate

points. The features that control the look of ‘POLYMARKERS’ are (Fig.5.4.):

 Marker characters : dot, plus, asterisk, circle or cross.

 Marker size scale factor : size of marker

 Polymarker color index : color of the marker.

Fig.5.4. GKS POLYMARKERS

iii) FILLAREA

The GKS ‘FILL AREA’ function permits to denote a polygonal shape of a zone to be filled with

various interior shapes. The features that control the look of fill areas are (Fig.5.5.):

http://ngwww.ucar.edu/gks/polymarker.html
http://ngwww.ucar.edu/gks/polymarker.html

 Text font and precision : text font should be used for the characters

 Character expansion factor : height-to-width ratio of each character.

 Character spacing : additional white space should be inserted between characters

 Text color index : color the text string

 Character height : size of the characters

 Character up vector : angle the text

 Text path : direction the text should be written (right, left, up, or down).

 Text alignment : vertical and horizontal centering options for the text string.

 FILL AREA interior style : solid colors, hatch patterns.

 FILL AREA style index : horizontal lines; vertical lines; left slant lines;

right slant lines; horizontal and vertical lines; or left slant

and right slant lines.

 Fill area color index : color of the fill patterns / solid areas.

Fig.5.5. GKS FILLAREA

iv) TEXT

The GKS TEXT function permits to sketch a text string at a specified coordinate place. The features

that control the look of text are:

Fig.5.6. GKS TEXT

v) CELL ARRAY

The GKS CELL ARRAY function shows raster like pictures in a device autonomous manner.

The CELL ARRAY function takes the two corner points of a rectangle that indicate, a number of

partitions (M) in the X direction and a number of partitions (N) in the Y direction. It then partitions the

rectangle into M x N sub rectangles noted as cells.

Fig.5.7. GKS CELL ARRAY

5.4. Standard for exchange images

A graphics standard proposed for interactive Three Dimensional applications should assure

different criteria. It should be introduced on platforms with changing graphics abilities without

sacrificing the graphics quality of the primary hardware and without compromising control over the

hardware’s function. It must offer a normal interface that permits a programmer to explain rendering

processes quickly.

To end with, the interface should be flexible adequate to contain additions, hence that as new

graphics operations become important, these operations can be given without sacrificing the original

interface. OpenGL meets these measures by giving a simple interface to the basic operations of 3D

graphics rendering. It supports basic graphics primitives, basic rendering operations and lighting

calculations. It also helps advanced rendering attributes such as texture mapping.

5.4.1. Open Graphics Library

OpenGL draws primitives into a structured buffer focus to a various selectable modes. Every

Point, line, polygon, or bitmap are called as a primitive. Each mode can be modified separately; the

parameters of one do not affect the parameters of others. Modes defined, primitives detailed, and other

OpenGL operations explained by giving commands in the form of procedure calls.

Fig.5.7. Schematic diagram of OpenGL

Figure 5.7 shows a schematic diagram of OpenGL. Commands go into OpenGL on the left. The

majority commands may be collected in a ‘display list’ for executing at a later time. If not, commands

are successfully sent through a pipeline for processing.

The first stage gives an effective means for resembling curve and surface geometry by

estimating polynomial functions of input data. The next stage works on geometric primitives explained

by vertices. In this stage vertices are converted, and primitives are clipped to a seeing volume in

creation for the next stage.

All ‘fragment’ created is supplied to the next stage that executes processes on personal

fragments before they lastly change the structural buffer. These operations contain restricted updates

into the structural buffer based on incoming and formerly saved depth values, combination of incoming

colors with stored colors, as well as covering and other logical operations on fragment values.

To end with, rectangle pixels and bitmaps by pass the vertex processing part of the pipeline to

move a group of fragments in a straight line to the individual fragment actions, finally rooting a block of

pixels to be written to the frame buffer. Values can also be read back from the frame buffer or

duplicated from one part of the frame buffer to another. These transfers may contain several type of

encoding or decoding.

5.4.2. Features of OpenGL

i) Based on IRIS GL

OpenGL is supported on Silicon Graphics’ Integrated Rater Imaging System Graphics Library

(IRIS GL). Though it would have been potential to have designed a totally new Application

Programmer’s Interface (API), practice with IRIS GL offered insight into what programmers need and

don’t need in a Three Dimensional graphics API. Additional, creation of OpenGL similar to Integrated

Rater Imaging System Graphics Library where feasible builds OpenGL most likely to be admitted; there

are various successful IRIS GL applications, and programmers of IRIS GL will have a simple time

switching to OpenGL.

ii) Low-Level

A critical target of OpenGL is to offer device independence while still permitting total contact

to hardware. Therefore the API gives permission to graphics operations at the lowest level that still

gives device independence. Hence, OpenGL does not give a suggestion for modeling complex

geometric objects.

iii) Fine-Grained Control

Due to minimize the needs on how an application utilizing the Application Programmer’s

Interface must save and present its information, the API must give a suggestion to state entity parts of

geometric entities and operations on them. This fine-grained control is necessary so that these

mechanism and operations may be defined in any order and so that control of rendering operations is

comfortable to contain the needs of various applications.

iv) Modal

A modal Application Programmer’s Interface arises in executions in which processes function

in parallel on different primitives. In that cases, a mode modify must be transmit to all processors so that

all collects the new parameters before it processes its next primitive. A mode change is thus developed

serially, stopping primitive processing until all processors have collected the modifications, and

decreasing performance accordingly.

v) Frame buffer

Most of OpenGL needs that the graphics hardware has a frame buffer. This is a realistic

condition since almost all interactive graphics run on systems with frame buffers. Some actions in

OpenGL are attained only during exposing their execution using a frame buffer. While OpenGL may be

applied to give data for driving such devices as vector displays, such use is minor.

vi) Not Programmable

OpenGL does not give a programming language. Its function may be organized by turning

actions on or off or specifying factors to operations, but the rendering algorithms are basically fixed.

One basis for this decision is that, for performance basis, graphics hardware is generally designed to

apply particular operations in a defined order; changing these operations with random algorithms is

generally infeasible. Programmability would variance with maintenance of the API close to the

hardware and thus with the objective of maximum performance.

vii) Geometry and Images

OpenGL gives support for managing both 3D and 2D geometry. An Application Programmer’s

Interface for utilize with geometry should also give guidance for reading, writing, and copying images,

because geometry and images are regularly joint, as when a Three Dimensional view is laid over a

background image. Various per-fragment processes that are applied to fragments beginning from

geometric primitives apply uniformly well to fragments corresponding to pixels in an image, making it

simple to mix images with geometry.

